1989年3月 NORTHWESTERN SEISMOLOGICAL JOURNAL March, 1989

兰州台观测到的π类震相初探

1.前宫

对于 L_1 、 L_{g_1} 和 L_{g_2} 波,有人认为是短周期面波,也有人认为是导波或 是多次反射波,对此已有较为详细的研究结果,但对纵波性质的同类型波却研究甚少。

近年来,作者在处理兰州台所记录到的中国大陆地区的地震的资料时发现,兰州台不仅能记录到较清楚的 π 震相,而且还能从 π 震相组中再分出纵波性质的,且与 L_1 、 L_{g_1} 和 L_{g_2} 相对应的三个震相,我们把它们命名为 π_1 、 π_{g_1} 和 π_{g_2} 震相。本文拟用兰州台 1979—1985 年的64型短周期仪和SK型中长周期仪的记录资料,给出 π_1 、 π_{g_1} 和 π_{g_2} 震相在兰州台 的记录特征和可观测范围。並根据文献〔1〕和1)的研究结果,讨论 π_1 、 π_{g_1} 和 π_{g_2} 波 在地壳 中的传播机制。

2.π置相及其记录特征

图 1 中给出了1979年—1985年发生在中国大陆及邻区的地震,共105个,其中有26个地震有π震相,占所选资料的¼弱。图 2 给出了两次典型的地震记录。表 1 给 出了 26个地 震的π

图 1 中国大陆地区的震中位置、台站位置和π波的传播路径图 1.具有π震相的地震和传播路径 2.具有Lg1和Lg2震相的地震 3.兰州台

图 2 两次典型的地震记录 a.1983年11月6日荷泽5.8级地震 b.1985年8月11日格尔木5.3级地震

表 1

	夜!										
编号	发展时刻 年.月.日 (G.M.T)	仪器	だ 相	震相到时 (G.M.T)	Tg (sec)	h (km)	T (sec)	φε.λε	Δ (km)	V _a km/sec	M
	1979.12, 2	SK	πί	01-39-35.1	204.7	-		38.4°N		5.99	
1	4.01-10-10	SK	πg1	39-43.1	212.7	_		90.3°E	1226;2	5.76	5. 7
٠		SK	πg2	39-55.6	225.7	_	4		·	5.44	
2	1980, 4,24 07-59-36,0	SK	πg 2	08-00-59.7	83.7	25	1,5	37.6° N 99.1° E	459.1	5.48	:4.6
-	1980.6.1	64	πі	06-20-3.3	125.4		1.5	38.9°N		5.48	
√ 8	06-18-57.9	64	πgi	20-9.8	131.9	.20	2.4	95.6°E	796.4	6.35	5.6
		64	πg2	20-22.3	144.4	-	2.5			6.03	
4	1981. 1 . 8 00-11-08.2	64	πg 2	00-14-45.0	216.8		2	38.4°N 90.7°E	1191.8	5.49	4.3
5	1981. 1 . 4 15-19-35.4	64	πg2	15-21-24.5	109.1		2	31.5°N 99.7°E	618.3	5.66	4.0
в	1981, 1 .13 13-55-21,3	64	πga	13-57-51.5	150.2		2	28.7°N 105.3°E	812.2	5.41	4.1
7	1981, 1, 21 18-20-00, 9	64	пда	18-22-24.5	143.6		2	37.6° N 112.4° E	100.0	5.49	4.0
8	1981. 6 . 9 22-08-21.4	64	πg1	22-11-39,0	197.1		2	34.4° N 91.3° E	1346.8	ъ.80	6.5
	1981, 7,23	64	πg1	20-14-42.0	141.1		2	40.4° N		5.88	
9	20-12-20.9	64	πga	14-51.5	150.6	-	2	111.4°E	830.6	5.51	4.0
10	1981. 8 . 13 03-01-37 . 0	64	πί	03-04-11.0	154.0			40.3°- N 113.4° E	070.4	6.30	5.0
	1981. 9.12	64	πі	08-19-28.5	162.8		2	42.6° N		5.98	
11	08-16-45.7	64	πg1	19-31.5	165.8		·	96.5°E	973.2	5.87	4.9
12	1981.10.23 23-44-47.9	64	πgi	23-47-52.5	, 184.6		2	29.7°N 95.0°E	1071.5	5.80	5.4
13	1981.11. 9 08-52-32.0	64	πg1	08-55-23.0	171.0	-	1.5	37.2°N 115.0°E	1009.4	5.90	3.8
٠,	1982. 1 . 13	64	πg1	15-19-58.5	133.6		1.5	37.3°N		p.99	
14	15-17-44.9	64	πg 2	20-08.5	143.6	-[112.6° E	800.1	Б. 57	4.3
15	1982, 1.22 04-30-01.9	64	πg1	04-34-0.5	239.6	56		30.7°N 90.0°E	1403.8	5.86	5.7
16	1982. 8. 7 11-48-44.2	64	πgi	11-51-13.0	148.8	25	2	33.3°N 94.9°E	863.3	5.80	Б,1

	•	
緸	幂	1

箱号	年.月.日 发震时刻 (G.M.T)	仪器	展相	震相到时 (G.M.T)	T _#	h (km)	T (sec)	φλ.	Δ (km)	V _m km/sec	M
4.5	1982. 6 15	64	πg2	22-27-52.0	105.6	1	1.5	31.5°N		5.64	
17	22-26-06.4	SK	πg2	22-27-52.0	105.6	-	4	100.1°E	596.3	5.64	4.2
18	1982. 6 . 15 23-24-31. 7	64	πg1	23-26-11,5	100.1			31.7°N 100°E	583, 2	5.82	6.0
19	1982, 9.26 11-20-32.4	64	πg1	11-22-42.0	129.6		1.5	29.5°N 100.5E	775.8	5.98	5.0
	1983,11.6	64	πί	21-12-30.5	164.9		1.5			6.33	
20	1965, 11. 6	64	πgı	12-40.5	174.9	15	1	35.0°N	1044.9	5.97	5.8
	21-09-45.6	64	ng2	12-49.0	183.4		2.5	115.3°E		5.69	
21	1984. 8.28 17-22-38.0	64	πg1	17-24-34.5	116.4		2.5	35.5°N 96.1°E	696.4	5.98	4.5
22	1985. 4.18 05-52-52.9	sĸ	πgı	05-55-24.0	196.1	7.1	8	25.7° N 102.9° E	1136.6	5.79	6.1
	1985. 5. 2	64	πί	03-14-41.5	125.7			37.3° N		6.22	
23	03-12-35.8	64	πgı	14-44.5	128.7	14		112.4°E	7 82. 6	6.08	4.1
		64	πg2	14-47.0	131.2			}		5.96	
24	1985. 5.30 00-40-43.7	. 64	πі	00-42-49.5	125.8	20	1.5	30.6° N 98.4° E	773.7	6.14	4.7
	1985. 8.11 16-05-57.6	64	πί	16-07-54.0	116.4					6.33	
25		64	πg1	08-03.0	125.9			36.0°N	737.4	5.85	5.3
		64	πg2	08-09,5	132.5		1.5	95.6°E		5.56	
	1985, 11, 30	64	πі	14-41-6.0	162.0			37.0° N	990.3	6.11	
26	14-38-24.0	64	πg1	41-09.5	165.5			114.8°E	330.0	5.98	5,0
		64	πg2 t	41-14.5	170.5		1.5	,		5.80	

震相到时,由于有些地震周期互相叠加,不好测量,故有些地震缺周期项。

根据表 1 给出的数据,用最小二乘法原理可拟合出 π_1 、 π_{g_1} 和 π_{g_2} 波的走时 和 距离关系式。

$$T_{\pi_{\bullet}} = 0.175\Delta - 11.9 \tag{1}$$

$$T_{\pi g_1} = 0.177\Delta - 6.3 \tag{2}$$

$$T_{\pi g3} = 0.183\Delta - 3.4 \tag{3}$$

式中T。的单位为秒, A的单位为公里。

图 3 给出了T_{*}走时和震中距关系曲线,同时给出了分别根据(1)、(2)和(3)式作出的拟合曲线。由图 3 可见,某些实测点与拟合曲线有些偏离,其原因可能是:

(1)地壳厚度不一致和地壳物质横向不均匀性,都会使π震相的时距 关系产生一定的

图 3 π震相时距关系图

表 2

-	平均速度	周期范围(
雕 相	(km/sec)	64型	SK型	可测范围(km)
πι	6.22±0.12	1.5~2		700~1300
πgi	5.89±0.09	1~2.5	8	500~1400
πε 2	5.58±0.14	1.5~2.5	4	400~1200

a.1985年11月30日河北邢台5.0级地震记录 b.1981年12月6日河北邯郸北4.6级地震记录

离散。

- (2)π震相是P震相之后,S震相之前的续至震相,它常叠加在P震相的 持续振动中, 而不易准确测量其到时。
 - (3)受地震基本参数测定精度的影响。

由表1可得到π₁、πg₁和πg₂震相的平均视速度、周期范围和兰州台对π**震相的**实际可测范围(表2)。

根据26个地震的记录资料,可将π震相的记录特征初步概括如下,

- (1) π 展相不是经常可以观测到的,甚至对一些发生在同一地方且震级相当的地震,有的可以观测到很清楚的 π 展相,有的却观测不到。
 - (2)π震相是P或P、震相之后的续至震相, T。-T。约在17-60秒之间。

图 5 1981年 6 月 9 日 6.5 级地震 记录 (64型仪器)

- (3) π 震相在垂直分向上位移较大,但在某个水平分向上有时也有较大的位移,如图 5 所示。在同一分向上它们的位移一般是 $A_{\pi g1} > A_{\pi g1} > A_{\pi l}$,如图 2、图 4 所示。
- (4)从图2、图4可以看出, π_1 的周期略大于 π_{g_1} 和 π_{g_2} 的周期, $\pi_{\pi_{g_2}}$ 的周期。略大于 π_{g_1} 的周期。
- (5)没有明显的频散现象;π 凝相的 清楚与否与震级大小无关;64型仪器记录到 的π震相较清楚。

3.π₁、π_{g1}和π_{g2}的传播机制

根据本文给出的三种波的 平均 视速度值,参考文献〔2-4〕中给出的关于 L₁、

 $L_a n R_a$ 波的传播机制,以文献〔1〕、1)对甘肃等地区的地壳分层结果(表3)为基础,作出了有关传播机制的假想模型(图6)。

_	
-	
-	34

层 数	层顶埋深(公里)	层厚(公里)	VP(公里/秒)	Vs(公里/秒)	r(V _P /V _S)
	0	1.1±0.6	5.08±0.17	2.90 ± 0.11	1,752
=	1,1	5.8±1.6	5.90 ± 0.04	3,50 ± 0.05	1,686
Ξ	6.9	14.1±1.8	6.06±0.01	3.57 ± 0.01	1.695
四	21.0	30.9±0.6 30.2±0.6	6.51±0.04	3.77±0.03	1,727
Ъ.	51,9(51,2)	1	8,17(8,08)	4.62	1,768(1,749)

图 6 π₁、π_{g1}和π_{g2}波的传播机制示意图

由于 π_1 波的平均速度与表 3 中给出的 1-4 层中的 P 波 层 厚 加权平均速度(6.29km/sec)相近,因此 π_1 波可能是P波在地壳内以多重 大 角 度 反 射 形 式传播而形成的压缩波。 π_{g1} 波的传播速度与表 3 中给出的 1-3 层中的P波层厚加权平均速度(5.96km/sec)相近,因此这种波可能是在地表沉积层和花岗岩层中传播的压缩波。 π_{g2} 波的传播 速 度 与表 3 中

^{1)} 王周元, 甘肃地区的地壳分层结构, 1982.

给出的 1 — 2 层中的P波平均速度(5.77km/sec)接近,因此它可能 是 在 沉积层和花岗岩上层传播的压缩波。

地表沉积层对以大角度入射的P波将产生相长干涉和相消干涉。若产生相长干涉,则在实际观测中将能观测到比原生震相P强的 π 震相(图 4)。若同一P波,在地壳 1-2 层内是相长干涉,而在 1-3 层内是相消干涉,则 反 映 在 地震记录图上是 π_{ga} 展相 清楚而 π_{ga} 展相缺失。

另外P波在地表沉积层的反射系数与波的频率有关^[5]。对某些频 率 的波, 反 射系数较大, 而对某些频率的波, 反射系数又较小。这可能是有些π震相记录不消 或**震相出现缺失的** 又一个原因。局部地质条件或场地响应也将导致波形和振幅的复杂化, 而用单台地震观测资料来解决这个问题是较为困难的。

张诚、王周元同志仔细审阅了全文, 並提出了有益的建议, 在此谨表谢意。

(本文1987年9月28日收到) (国家地震局兰州地震研究所 **许健生)**

参考 文献

- [1]冯锐等,利用地震面波研究中国地壳结构,地震学报, Vol. 8, No. 4, 1981.
- (2)M. Bath, The elastic waves Lg and Rg along Euroasiatic Arkiv for Geofysik, 1954.
- [8]B. Gutenberg, Channel wave in the earth crust, Geophysics, Vol.20, 1955.
- (4)M. Bath, A continental, channel wave guided by the intermediate in the crust, Geofis., Pura.e. Appl., Vol.38, 1957.
- [5]Olsen, K. H. et al., Modeling short period crustal phases (P. Lg.) for long-range refraction profiles, Phys. Earth Plante Inter., Vol.31, No.4, 1983.

A PRELIMINARY STUDY ON THE π PHASES OBSERVED AT LANZHOU SEISMIC STATION

Xu Jiansheng
(The Earthquake Research Institute of Lanzhou, SSB)