第11卷 第1期

西北地震学报

Vol.11, No.1

1989年3月 NORTHWESTERN SEISMOLOGICAL JOURNAL March, 1989

兰州台观测到的π类震相初探

1.前言

对于L₁、Lg₁和Lg₂波,有人认为是短周期面波,也有人认为是导波或是多次反射波, 对此已有较为详细的研究结果,但对纵波性质的同类型波却研究甚少。

近年来,作者在处理兰州台所记录到的中国大陆地区的地震的资料时发现,兰州台不仅 能记录到较清楚的 π 震相,而且还能从 π 震相组中再分出纵波性质的,且与L₁、L_{g1}和L_{g2}相 对应的三个震相,我们把它们命名为 π_1 、 π_{g_1} 和 π_{g_2} 震相。本文拟用兰州台 1979—1985 年的 64型短周期仪和SK型中长周期仪的记录资料,给出 π_1 、 π_{g_1} 和 π_{g_2} 震相在兰州台 的记录特征 和可观测范围。並根据文献〔1〕和1)的研究结果,讨论 π_1 、 π_{g_1} 和 π_{g_2} 波 在地壳 中的传播机制。

2.π 囊相及其记录特征

图 1 中给出了1979年—1985年发生在中国大陆及邻区的地震,共105个,其中有26个地震 有π 震相,占所选资料的¼弱。图 2 给出了两次典型的地震记录。表 1 给 出了 26个地 震的π

图 1 中国大陆地区的震中位置、台站位置和π波的传播路径图 1.具有π農相的地震和传播路径 2、具有Lga和Lga農相的地震 3.兰州台

西北地震学报

第11卷

,

表 1

74

编	发展时刻	仪	震	震相到时	. Te	h	T		Δ	V.	
号	年.月.日 (G.M.T)	器	相	(G.M.T)	(sec)	(km)	(sec)	φ ε.λε	(km)	km/sec	M
	1979.12.2	SK	πi	01-39-35.1	204.7		/ .		 	5.99	
1	01-37-10.4	SK	πg1	39-43.1	212.7			38.4°N	1226;2	5.76	5.7
·		SK	πg 2	39-55,6	225.7		4	50.0 E		5.44	
2	1980.4.24 07-59-36.0	SK	πgt	08-00-59.7	83.7	25	1.5	37.6°N 99.1°E	459.1	5.48	:4.6
<u> </u>	1980.6.1	64	πi	06-20-3.3	125.4		1.5	38,9°N		5.48	
·, 8	06-18-57.9	64	πg1	20-9.8	131.9	.20	2.4	95.6°E	796.4	6,35	5.6
		64	πg 2	20-22.3	144.4		2.5			6.03	
4	1981.1.8 00-11-08.2	64	πg s	00-14-45.0	216.8		2	38.4°N 90.7°E	1191.8	5.49	4.3
5	1981.1.4 15-19-35.4	64	πg2	15- 21 -24.5	109.1		2	31.5°N 99.7°E	618,3	5.66	4.0
8	1981, 1, 13 13-55-21, 3	64	πgt	13-57-51.5	150.2		2	28.7°N 105.3°E	812.2	5.41	4.1
7	1981.1.21 18-20-00.9	64	πge	18-22-24.5	143.6		2	37.6° N 112.4° E	788.3	5.49	4.0
8	1981.6.9 22-08-21.4	64	ng1	22-11-39,0	197.1		2	34.4°N 91.3°E	1146.8	Б.80	6.5
	1981. 7.23	64	πg1	20-14-42.0	141.1		2	40.4° N		5.88	
	20-12-20.9	64	πga	14-51.5	150.6		2	111.4°E	830,6	5.51	4.0
10	1981, 8,13 03-01-37,0	64	πi	03-04-11.0	154.0			40.3°-N 113.4°E	970.4	6,30	б.0
11	1981. 9.12	64	πi	08-19-28.5	162.8		2	42.6° N		5.98	
	08-16-45.7	64	πg1	19-31.5	165.8			96.5°E	973.2	5.87	4.9
12	1981.10.23 23-44-47.9	64	πgi	23-47-52.5	. 184.6		2	29.7°N 95.0°E	1071.5	Б.80	5.4
13	1981.11.9 08-52-32.0	64	πg1	08-55-23.0	· 171.0		1.5	37.2°N 115.0°E	1009.4	5.90	3.8
14	1982.1.13	64	πg1	15-19-58.5	133.6		1.5	37.3°N	800 1	5 .99	
14	15-17-44.9	64	πg 2	20-08.5	143.6			112.6°E		5.57	4.3
15	1982.1.22 04-30-01.9	64	πgi	04-34-0.5	239.6	56		30.7°N 90.0°E	1403.8	5,86	5.7
16	1982.8.7 11-48-44.2	64	πgi	11-51-13.0	148.8	25	2	33.3°N 94.9°E	863.3	5,80	5,1

1

t

_											
编号	年,月,日 发震时刻 (G,M,T)	仪器	度相	震相到时 (G.M.T)	T# (sec)	h (km)	T (scc)	φλ ε	Δ (km)	V≝ km/sec	М
	1982. 6 15	64	πg2	22-27-52.0	105.6		1.5	31.5° N	 	5.64	
Τ1	22-26-06.4	SK	πg2	22-27-52.0	105.6	-	4	100.1°E	596.3	5.64	4.2
18	1982. 6.15 23-24-31.7	64	πg1	23-26-11.5	100.1			31.7°N 100°E	583.2	5.82	6.0
19	1982, 9.26 11-20-32.4	64	πg1	11-22-42.0	129.6		1.5	29.5°N 100.5E	775.8	5.98	5.0
	1099 11 8	64	πi	21-12-30.5	164.9		1.5			6.33	
20	1909,11, 0	64	πgi	12-40.5	174.9	15	1	35.0°N	1044.9	5.97	5.8
	21-09-45.6	64	πgs	12-49.0	183.4		2.5	115.3°E	ļ	5.69	
21	1984.8.28 17-22-38.0	64	πg1	17-24-34.5	116.4		2.5	35.5°N 96.1°E	696.4	5,98	4.5
22	1985.4.18 05-52-52.9	SK	πg1	05-55-24.0	196.1	7.1	8	25.7°N 102.9°E	1136.6	5.79	6.1
	1985.5.2	64	πί	03-14-41.5	125.7			37.3° N		6.22	
23	03-12-35.8	64	πgı	14-44.5	128.7	14		112.4°E	782.6	6.08	4.1
		64	πg2	14-47.0	131.2					5.96	
24	1985. 5.30 00-40-43.7	. 64	πί	00-42-49,5	125.8	20	1.5	30.6°N 98.4°E	773.7	6.14	4.7
	1985.8.11	64	πί	16-07-54.0	116.4					6.33	
25	16-05-57.6	64	πg1	08-03.0	125,9			36.0°N	737.4	5.85	5.3
		64	πg 2	08-09,5	132.5		1.5	95,6°E		5.56	
	1985,11.30	64	πi	14-41-6.0	162.0			37.0°N	990 3	6.11	
26	14-38-24.0	64	πg1	41-09,5	165.5			114.8°E	500.0	5,98	5.0
		64	πg2 t	41-14.5	170.5		1.5			Б.80	

熤	寫	1
-	-AX-	

震相到时,由于有些地震周期互相叠加,不好测量,故有些地震缺周期项。

根据表1给出的数据,用最小二乘法原理可拟合出π₁、πg₁和πg₂波的走时和距离关系式,

 $T_{\pi_{i}} = 0.175\Delta - 11.9$ $T_{\pi_{g1}} = 0.177\Delta - 6.3$ $T_{\pi_{g2}} = 0.183\Delta - 3.4$ (1)
(1)
(2)
(3)

式中T,的单位为秒, Δ的单位为公里。

图 3 给出了T_{*}走时和震中距关系曲线,同时给出了分别根 据(1)、(2)和(3)式 作出的拟合曲线。由图 3 可见,某些实测点与拟合曲线有些偏离,其原因可能是:

(1)地壳厚度不一致和地壳物质横向不均匀性,都会使**π震相的时距**关系产生一定的

75

图 3 π震相时距关系图

袅2

	~ 平均速度	周期范围((sec)		
是祖	(km/sec)	64型	SK型	可調氾問(km)	
πι	6.22±0.12	1.5~2		700~1300	
πει	5.89±0.09	1~2.5	8	500~1400	
πε 2	5.58±0.14	1.5~2.5	4	400~1200	

离散。

(2) π 震相是P 震相之后,S 震相之前的续至震相,它常叠加在P 震相的 持续振动中, 而不易准确测量其到时。

(3)受地震基本参数测定精度的影响。

由表1可得到π₁、πg₁和πg₂震相的平均视速度、周期范围和兰州台对π震相的实际可测 范围(表2)。

根据26个地震的记录资料,可将π震相的记录特征初步概括如下。

 (1) π 緩相不是经常可以观测到的,甚至对一些发生在同一地方且震级相当的地震, 有的可以观测到很清楚的 π 緩相,有的却观测不到。

(2)π震相是P或P。震相之后的续至震相,T。-T。约在17-60秒之间。

?1994-2017 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

图 5 1981年 6 月 9 日 6.5 级地震 记录(64型仪器)

(3) π 震相在垂直分向上位移较大, 但在某个水平分向上有时也有较大的位移, 如图 5 所示。在同一分向上它们的位移一般 是 A_{πg1} > A_{πg1} > A_{π1}, 如 图 2、图 4 所 示。

(4)从图2、图4可以看出, π₁的 周期略大于πg₁和πg₂的周期, 而πg₂的周期 略大于πg₁的周期。

(5)没有明显的频散现象; π 震相的 清楚与否与震级大小无关; 64型仪器记录到 的π震相较清楚。

3.π₁、π_{g1}和πg1的传播机制

根据本文给出的三种波的平均视速度 值,参考文献〔2-4〕中给出的关于L₁、

L_a和R_a波的传播机制,以文献〔1〕、1)对甘肃等地区的地壳分层结果(表 3)为基础,作出了有关传播机制的假想模型(图 6)。

ŧ

			· · · · · · · · · · · · · · · · · · ·		
层数	层顶埋深(公里)	层厚(公里)	VP(公則/秒)	Vs(公里/秒)	r(Vp/Vs)
	0	1.1±0.6	5.08±0.17	2.90±0.11	1,752
=	1.1	5.8±1.6	5.90 ± 0.04	3.50 ± 0.05	1.686
Ξ	6.9	14.1±1.8	6.06 ± 0.01	3.57±0.01	1.695
M	21.0	$\begin{array}{c} 30.9 \pm 0.6 \\ 30.2 \pm 0.6 \end{array}$	6.51±0.04	3.77±0.03	1,727
Ъ	51,9(51,2)	1	8,17(8,08)	4,62	1.768(1.749)

图 6 π1、πg1和πg2波的传播机制示意图

由于π₁波的平均速度与表 3 中给出的 1 — 4 层中的 P 波 层 厚 加权平均速度(6.29km/ sec)相近,因此π₁波可能是P波在地壳内以多重 大 角 度 反 射 形 式传播而形成的压缩波。 π_{g1}波的传播速度与表 3 中给出的 1 — 3 层中的P波层厚加权平均速度(5.96km/sec)相近, **因此这种波可能是在地表沉积**层和花岗岩层中传播的压缩波。而π_{g1}波的传播 速 度 与表 3 中

1)王周元,甘肃地区的地壳分层缩构,1982.

第1期

给出的1-2 层中的P波平均速度(5.77km/sec)接近,因此它可能是在沉积层和花岗岩 上层传播的压缩波。

总之, n, 、 nei和nee波是P波在地壳的不同层内, 以不同的速度 和 频 率, 多 次 在地 表 **祝积层内和各个速度间断面上以大角度反射,又相互迭加后形成的多重反射波。其主要界面** 是自由表面和莫霍面或陡峭的速度梯度带。地表沉积层的存在是多重反射 波 产 生 的关键因 素。只有当表面反射点位于沉积层内时,它们的震相才能被记录到。

地表沉积层对以大角度入射的P波将产生相长干涉和相消干涉。若产生相长干涉,则在实 际观测中将能观测到比原生震相P强的π震相(图 4)。若同一P波,在地壳1--2层内是相 长干涉,而在1-3层内是相消干涉,则反映在地震记录图上是πga能相清楚而πga 震相缺 失。

另外P波在地表沉积层的反射系数与波的频率有关[5]。 对某些频 ഴ 的波、反 射系数较 大,而对某些频率的波,反射系数又较小。这可能是有些π震相记录不消或震相出现缺失的 又一个原因。局部地质条件或场地响应也将导致波形和振幅的复杂化,而用单台地震观测资 料来解决这个问题是较为困难的。

张诚、王周元同志仔细审阅了全文, 並提出了有益的建议, 在此谨表谢意。

(本文1987年9月28日收到)

(国家地震局兰州地震研究所 许健生)

[1]冯锐等,利用地震面波研究中国地壳结构,地震学报,Vol.8, No.4, 1981.

(2)M. Bath, The elastic waves Lg and Rg along Euroasiatic Arkiv for Geofysik, 1954.

[8]B. Gutenberg, Channel wave in the earth crust, Geophysics, Vol.20, 1955.

[4]M. Bath, A continental, channel wave guided by the intermediate in the crust, Geofis, Pura.e. Appl., Vol.38, 1957.

[5]Olsen, K. H. et al., Modeling short period crustal phases (P, Lg) for long-range refraction profiles, Phys. Earth Plante Inter., Vol.31, No.4, 1983.

A PRELIMINARY STUDY ON THE π Phases observed AT LANZHOU SEISMIC STATION

Xu Jiansheng

(The Earthquake Research Institute of Lanzhou, SSB)

78