第11卷 第2期

Vol.11, No.2

1989年6月 NORTHWESTERN SEISMOLOGICAL JOURNAL June, 1989

4

西安市场地土的地震波速

1. 前窗

为了给西安市地震小区划提供场地土的动力参数,我们采用应力波检层法,现场实测了 西安市场地土的地震波速。击振方式为木板敲击法。使用的测试仪器为兰州地震研究所自行 设计安装的孔内充气附壁探头,内装三分向DZJ5一71型地震小检 波 器,经701—5型测振 放大器将信号放大后,采用SC—16线示波器紫外光记录。本文介绍了测试 结 果,根据测试 结果,选用幂函数的形式,用最小二乘法原理统计得出了不同成因类型,不同地质时代土层 V_s与其埋藏深度H之间的关系式,並给出了西安市区可液化砂类土V_s值与 标 准贯入N₆₃.5 值和土层埋藏深度H之间的关系式。

2. 测试结果

(

区划范围内可分为河谷冲积平原、黄土台塬和山前洪积平原三个主要地貌单元。由钻孔 剖面和探坑剖面分析,地表以下100m深度内可见土壤地层,主要有人工填土、黄土状土、古 土壤、淤泥质土、亚粘土、砂类土、卵砾石层七种。为取得各类土层地震波速值,我们在市 区不同地貌单元上布设了84个勘探点(见图1)。表1列出了各类土层V₅、V₅的测试结 果。图2为各类土层波速与埋藏深度的散点图。从图2中可以看出,V₅、V₅的测试结 增加都有一个缓缓增加的总趋势,其增加的情况和土的成因类型、地质时代、结构成分都有 关系。根据波速随深度的这一变化趋势,我们选用了幂函数的形式,按最小二乘法原理统计 建立了V₅值与土层埋藏深度H的变化关系,其形式为:

$$V_s = aH^b \tag{1}$$

式中a、b为待定常数。埋藏深度H的单位为m,取由地表到测层底部的垂直距离。对于地表 测点,统计时深度取其层厚的三分之一。各类土层波速统计结果见表1。

图1 西安市场地土波速测点

位置图

- 1.80-100m检层孔及编号
- 2.50m检层孔及编号
- 3.标准贯入孔及编号
- 4. 探井及编号 5. 地面测点及编号

第11卷

(

3

)

表 1		西安地区各类土的波速							
土质类型	地质时代	波速范围值 (米/秒)	平均值 (米/秒)	统计公式	相关 系数 (y)	剩余标 准离差 (S)	误差 系数	统计深度 (米)	数据 组数
人工填土		Vs: 90—270 Vș;151—484	V s ≈166 V p ≈283	V p = 2,244V s ⁰ :942	0.91	38 66	0.23 0.23	09.3 09.3 09.3	131 86 86
黄土状土	Q4	Vs.13 ⁹ -365		V s = 1463H ⁰ : 1 9 8	0.57	48	0.24	0.9-13.0	19
	Q ₈	Vs:115-470 Vp:249-788	$\overline{\overline{V}}_{S} = 278$ $\overline{V}_{P} = 464$	V _S = 1412H ⁰ : 28 V _P = 240H ⁰ : 31 V _P = 1.828 V _S ⁰ : 988	0.76 0.77 0.90	45 93	0.16 0.20	$1.6-40.0 \\ 1.6-23.0 \\ 1.6-23.0$	215 58 58
	Q2	V s 1279-484	\overline{V} s = 364	V _S = 152.4H ⁰ : 243	0.64	47	0.13	17.0-77.3	36
古土壤	Q3, Q2	V s :915-453	$\overline{V}_{S} = 329$	Vs = 188.7H°: 190	0.60	65	0.17	3.8-4.1)	77
淤 泥质土	Q4, Q3, Q2	Vs:205-581	$\overline{V}_{S} = 390$	Vs=37.7H0:382	0.84	50	J. 13	9.7-100.0	66
亚粘土	Q4	Vs₁149→480	$\overline{V}s = 249$	V _S = 137. 3H ⁰ : 254	0.68	47	0.19	2.4-62.7	48
	Qs	Vs:205-645	V s = 323	Vs=119.2H ⁰ :\$\$9	0.88	47	0.15	4.8-100.4	26
	Q2	V s 248-617	\overline{V} s = 386	$V_{S} = 110.7 H^{\circ}$: 3 4 6	0.83	48	0.12	20.0-100.5	б0
砂类土	Q4	Vs:125-392	\overline{V} s = 259	V _S = 125.1H ⁰ : 303	0.77	37	0.14	1.25-20.3	66
	Q3 .	Vs:248-586	$\overline{V}_{S} = 384$	V _S = 146.1H ⁰ :27 2	0.76	53	0.14	8.0-100.0	46
	Q2	V s 273-606	$\overline{V}_{S} = 427$	V _S = 116.1H ⁰ : 3 3 6	0.79	49	0.12	15.0-100.0	83
卵砾石层	· · · · · · · · · · · · · · · · · · ·	V s . 348-670	Vs ≈ 497	,				1474.0	9

图2 各类土层Vs与埋藏深度(H)的关系

P波速度的测定主要在探坑中进行。大 部分测点集中在人工填土和黄土状土(Q₃) 层中。图 3 示出了人工填土和黄土状土(Q₃) 层V,与Vs的关系曲线。经回归计算得出了 人工填土的 V_{p} 与 V_{s} 的关系为:

 $V_{P} = 2.244 V_{s}^{0.942}$.

相关系数γ=0.91。

黄土状土(Q_s)V_p与V_s的关系为: $V_{p} = 1.828 V_{s}^{0.988}$,相关系数 $\gamma = 0.90$ 。

图 3 人工填土及黄土状土(Q₃)V_P与V_s的关系 由以上两式可以看出,V。随V。增加而增大,几乎呈线性关系变化,说明 二者具有良好 的对应关系。

为进行西安市区场地土的液化危害性分析。我们根据宏观手段的初判结果。分别在市区 西部的古河道及西北部一级阶地等处有饱和砂土、轻亚粘土层存在的地貌单元上,布置了14 个20m 深的标准贯入试验勘探孔。並在孔内同时作了标准贯入试验和S波检层测试。对现场 试验结果进行回归统计,得出了可液化土层的剪切波速(V_s 值)与实测标准贯入 N_{ss} 。。值及 土层埋藏深度H的二元关系式:

> $V_s = 105 + 1.25 \text{ N}63.5 + 7.87 \text{ H}$ (2)

全相关系数R=0.99,标准离差S=7.02。R值趋向1,S值很小,表明Vs与Nss.、H 值具有良好的对应关系, (2)式成立。

3.小 结

t

(1) 西安市区场地土波速统计分析结果表明,不仅不同土质类型土层的V。值明显不 同,而且不同地质时代土层的Vs也有明显变化。土层的地质时代反映了土粒间的结合程度, 即同一土质类型土层的沉积年代越久,土粒间的结合越紧密,Vs值就愈高。

(2)各类场地土的V。值随土层的埋藏深度增加而缓慢增大的趋势明显,这一趋势是 建立各类土相关统计的基础。

(3)在地震工程中,运用场地土的密度和地震波速值计算场地土在小应变量下的动力 参数是一种简便易行的工作方法。

(4)由于土层的波速值有一定的离散性,有时离散性很大,所以各类土的统计式及公 式(2)具有地区性,对重大工程应现场实测地震波速。

西安市勘探孔的施工和标准贯入试验是由西安市勘察测绘院完成的。笔者与孙崇绍参加 了全部现场波速测试工作,此外,兰州地震研究所的蒋祖森、张树清、曾勇、林学文、王兰 民等及西安市勘察测绘院的高光涛、聂振斌二同志参加了部分测试工作。

(本文1987年10月17日收到)

(国家地震局兰州地震研究所 李藩文)

文 朌

1982 地震出版社, 地爬波在工程中的应用。 2]王钟琦等,地震工程地质导论,地震出版社,1983. 【8】田科米辰雄等(日),地基与震害,张振中等译,地震出版社,1980. (4〕中国科学院数学研究所统计组,常用数理统计方法,科学出版社,1979.

THE SEISMIC WAVE VELOCITY OF SITE SOIL IN XI'AN Li Fanwen (The Earthquake Research Institute of Lanzhou, SSB)