单片计算机在地震观测仪器中的应用

1.前 言

随着计算机技术的推广普及,单片计算机以其独特的技术优势迅速地渗透到各个技术领域。国外许多地震仪器早已用上了单片计算机,国内在这方面也已取得了可喜的进展。我们在江苏省地震局的帮助、支持下,应用单片计算机研制和改造了一些地震仪器,取得了良好的效果。本文结合两个实例,简单介绍单片计算机在地震观测仪器中的应用。

2.单片计算机简介

单片计算机又称微控制器,是微型计算机的一个 独 特 而 重要的分支,它把中央处理器 (CPU)、存贮器(RAM和ROM)、定时/计数器、输入/输出接 口 等 都集成在一块芯片上,一块芯片就是一台功能完善的微型计算机。这种计算机具有许多优点,如集成度高、控制功能强、可靠性高、运算速度快、系统配制灵活、开发方便、容 易 产 品 化和价格便宜等等。因此,尽管单片计算机问世不过十余年,但发展十分迅速,应用相当广泛。

单片计算机种类很多,按位数分有 1 位、 4 位、 8 位、16位,目前使用最普遍的是 8 位。国内外市场上较为流行的单片计算机有INTEL公司的 MCS—48、51、96三个系列,MOTOROLA公司的1400、M6801、M6805三个系列及ZILOG公司的 2。系列。

3.单片计算机在地震观测仪器中的应用

(1)动物行为活动智能记录仪

我们应用80C39单片计算机研制成功"动物行为活动智能记录仪",该智能化仪器可以用来观测记录多种动物活动信息,也可以记录温度、日照等环境参数。图 1 为仪器硬件结构框图。传感器负责将

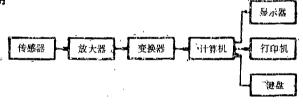


图 1 动物行为活动智能记录仪结构框图

动物行为活动信息转换成电信号,这一微弱信号经放大达到计算机工作电平。由于计算机处理的信息是数字量,所以当观测的量为连续变化的模拟量时,须将其变换成数字量。如当观测动物吗叫次数时,就要将放大后的模拟电信号滤波整形,以保证动物吗叫一次只输出一个正规方波脉冲送计算机计数。再如,当观测环境温度或日照时,就要将放大后的电信号变换成与其高低或强弱相对应的脉冲序列。变换器就是将模拟量变换为数字量的功能装置。单片计算机是整个仪器的核心,它不仅随时接收、处理各通道输入的电脉冲信号,还要进行计时和管理键盘、显示器、打印机等外围设备。考虑到记录仪中计算机外设不多,控制功能不太复杂,所以在设计时选择普通档次的芯片80C39作CPU,由它和27C16、82C43、74HC373芯片构成计算机小系统。80C39是属于MCS—48系列的低功耗八位单片计算机芯片,由于片内没有程序存贮器,故外接27C16作外部程序存贮器,并用74HC373进行地址锁存。82C43是专门为MCS—48系列单片计算机设计的扩展芯片,它带有四个四位输入/输出接口(即P4、P5、P6、P7口),有大电流驱动能力。计算机系统的外围设备有键盘、

显示器、打印机。键盘由十六只按键组成,是计算机的输入设备,用它进行人机对话。显示器由八位七段数码管组成。打印机采用字轮式微型打印机,它们能随时或定时显示、打印输出观测结果。

80C39、82C43 两芯片 各接口的用途如图 2 所示。80C39的 P_1 口连接键盘, P_2 口高四位连接打印机,低四位连接扩展芯片 82C43,总线(BUS)连接 27C16 和74 HC373,82C43的 P_4 口连接输入通道, P_5 、 P_6 、 P_7 三口连接显示器。

80C39单片计算机 时钟 频率为 6 MC, 利用可编程定时器的计时中断特性可获得准 确时基,通过软件实现精确的日历、时钟计时。

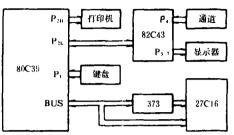


图 2 计算机系统接口连接图

记录仪内部控制全部由80C39的软件完成,整个软件用MCS—48单片 计算 机机器码写成,约占 2 K字节。程序设计采用模块结构,即将各部的功能在软件上尽可能设计成模块,全部程序模块由主程序和中断服务程序有机地联接起来。主程序流程图如图 3 所示。计算机上电复位后先进入初始化程序,接受初始工作状态预置,当键入时间、打印间隔、工作通道等参数后,按下启动键,仪器就进入工作状态,定时器开始计时,打印机随即打印启动日期和时间,然后计算机不断调用显示、键处理、打印等子程序,接受中断服务程序,控制各种输入、输 出 设 备,按 规定时间完成规定操作,实现自动观测。中断服务程序由计时、计数等

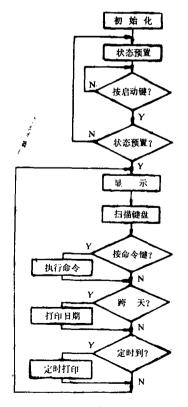


图 3 主程序流程图

模块组成(图4),主要任务是进行时间累 计和各通道数据处理。由于数据处理程序设 置在中断服务程序之中,故在打印机工作期 间仪器仍能处理通道输入的信息,做到打印 期间不丢数。

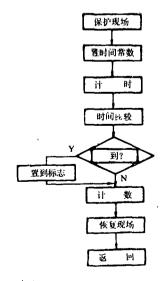


图 4 中断服务程序流程图

下面以计数程序为例,简单介绍记录仪软件编制方法。计数程序设置在中断服务程序之中,计算机每20毫秒对82C43的P₄口采样一次,并对采样结果逐位进行分析,若某位电平由高变低且20毫秒后仍为低电平时,就给该位设置计数标置,以后当检测到该位电平由低变高且20毫秒后仍为高电平时,则清除标志并给该通道计数加"1",否则不予计数。计数程序见表 1。

	表 1	计数程序	•
SEL	B 1	JB 1	MK 5
MOV	R 2, A	JB 2	CN 0
•		JMP	MK 4
•	4	MK3 · INC	- A
CN: MOVD	A, P4	MOV	@R0, A
CPL	Α,	JMP	ΜK
RL	A	MK4 • MOV	© R0, #00H
MOV	R7, A	1 MP	MK
MOV	R0,#3FH	MK 5 • ADD	A,#02H
MOV	R1,#41H	MOV	@ R 0 , A
MOV	R3,#05H	JMP	MK
MK:INC	R0	MK 6 · DEC	A
DINE	R3, MKO	DEC	A
MOV	A, R2	MOV	@ R 0 , A
SEL	B0	JMP	MK
RETR		CN0:MOV	A, 🕲 R 1
MKO•MOV	A, R1	ADD	A, #01H
ADD	A, #03H	DA	A
MOV	R1, A	MOV	♠ R1, A
MOV	A, R7	JZ	CN 1
RR	A	JMP	MK
1BO	MK 1	CN1 · MOV	@ R 1 #00H
J MP	MK 2	INC	R 1
MKI:MOV	A, 🕲 R 0	MOV	A, @R1
JZ	MK 3	ADD	A, #01H
JBO	MK 8	D A	A
JB 2	MK 6	MOV	@R1, A
JMP	MK	JZ ·	CN 1
MK 2 • MOV	A, © R 0	1 MP	MK
JZ	MK		

(2)核旋自动观测装置

为了实现核旋测量自动化,我们应用80C31单片计算机为CZM—2型质子旋进式磁力仪研制了自动观测装置。该装置能在无人职守的情况下,控制磁力仪按预先设定的时间自动进

行自校及地磁总场和垂 直分量的测量,并按规定格式将测量日期、时间和结果记录下来。该装置还能在时钟整点值输出10秒宽度开关脉冲,因而可以取代石英钟为光记录地磁仪时号灯提供控制信号。

图 5 为装置硬件结构框图。由于装置对计算机的接口功能要求较高,因此选用档次较高的80C31作CPU,与27C64、74HC373组成计算机系统。27C64为8K字节程序

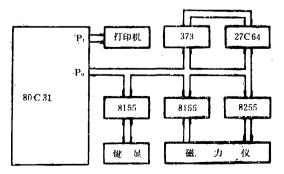


图 5 核旋自动观测装置结构框图

存贮器,74HC373为地址锁存器。接口电路8155和8255 将计算机与显示器、打印机、磁力仪等配接起来。8155和8255均为可编程接口芯片,其功能可通过系统软件进行程序设定,因此在外接器件或设备时一般不需要外接硬件逻辑。在装置中,一片8155连接键盘和显示器,另一片作输入接口与CZM—2磁力仪相连,磁力仪的观测数据及打印指令通过它输送到计算机总线。8255 作输出接口与磁力仪连接,计算机通过它对CZM—2磁力仪进行程序控制,实现地磁自动观测。

电源部分采用数只三端稳压集成块,分别提供+15V、+12V、+5V及50~150毫安可调恒流4组直流电源,并具有交直流自动切换功能。

装置系统软件除了具有"动物行为活动记录仪"软件的主要特点外,还增加了自诊断功能,一旦出现干扰装置工作不正常时,计算机就执行自诊断程序,使装置自动恢复到正常状态。

4. 几点体会

我们研制的几台仪器都在地震台站正式使用。实践表明,这些仪器工作可靠,性能稳定,时间精确,功耗低,干扰小,操作维护方便。使用这些仪器减轻了测报人员的劳动强度,提高了观测质量。另外,各类仪器都带有交直流自动切换装置,只要配备合适的直流电源,就能保证仪器长期连续工作。通过几年的实践我们认为:

- (1)单片计算机集成度高,体积小,功能全,价格便宜,用它代替常规控制逻辑,不仅便于产品智能化、小型化,而且能降低成本。由于在一片芯片上集成了一台计算机所需的基本功能部件,省去了大量的外部连线,减少了外部干扰因素,同时也简化了印刷电路板的设计和加工,因此提高了仪器的可靠性。
- (2)对于用单片计算机制作的仪器、仪表,配备合适的硬器件就可以实现功能扩展,变化软件就能修改基本系统。例如对动物行为活动智能记录仪,再配接合适的传感器还能观测记录流体的流量和流速,也可以用作工业计数器,能作到一机多用。
 - (3) CMOS芯片的单片计算机功耗很小,非常适合于地震台站使用。

将单片计算机应用于地震仪器,目前在国内仅仅处于起始阶段。随着计算机技术的进一 步普及、推广,单片计算机将在地震仪器研制工作中发挥重要的作用。

(本文1988年12月30日收到)

(江苏盐城市微机应用研究所 李汉培) 江苏盐城市地震办公室 **顾保众**)

参考 文献

- [1]谢剑英,微型计算机控制技术,国防工业出版社,1985.
- [2]徐爱卿等,单片微型计算机及其应用,北京航空学院出版社,1986.
- [8] 蔣锦昌等, 霞前声发射与动物异常关系, 地震学报, Vol. 3, No. 3, 1981.
- (4) Intel Crop, Microcontroller Handbook, 1986.

APPLICATIONS OF SINGLE CHIP PROCESSOR IN SEISMIC INSTRUMENT

Li Hanpei

(Microcomputer Applied Institute of Yancheng City, Jiangsu Province)

Gu Baozhong

(Seismological Office of Yancheng City, Jiangsu Province)