汾渭地震带地震发生的随机性分析

许俊奇

(陕西省地震局)

摘 要

本文应用周期图分析与平稳随机过程的自回归模型,对汾渭地震带地震发生的规律性进行了讨论,并给出了未来百年内该带地震发生的可能时段。

关键词:汾渭地震带 周期图 自回归模型

汾渭地震带同其它地震带一样,其地震的发生不但存在着周期性,而且还存在着一定的随机性。本文应用周期图分析与平稳随机过程的自回归模型,对汾渭地震带地震发生的规律性进行了讨论,并给出了未来百年内该带地震的发生的可能时段。

一、 资料的处理方法

汾渭地震带自公元504年至今共发生 $M_s \ge 5.0$ 级地震92余次,其中 $M_s \ge 6.0$ 级的 地震 23 次,见图 1 a。由图可见,地震在时间上的分布很不均匀,要想将该序列构造成等 时间间隔 的地震数字时间序列,便于处理,则还必须对图 1 a的序列进行埃尔米特 插 值⁽¹⁾,并取经 **验常数** a = 0.025。

4

图 1 汾渭地震带地震时间序列 及其埃尔米特插值曲线 a.时间序列图 b.埃尔米特插值曲线

Fig. 1 Time sequence of energy level and its Elmit interpolation curve (N=34) in Fenwei seismic belt 取汾渭地震带公元504年至1989年的地震资料,以十年为间隔,可得到149个间隔,其中 少数间隔内有破坏性地震(M_s≥6.0)发生,舍弃前震和余震,有震间隔中取各次地震的能 量对数作为该间隔的统计数值,无震间隔采用埃尔米特插值法进行插值,于是可以得到以34 个地震(见表1)为基础而构造出来的渭河盆地地震序列曲线λ(t),其结果见图1b。于 是历史地震活动的强弱变化就可通过插值后一条光滑的曲线描述出来。利用曲线外推预测 时,只要寻找出外推曲线一阶导数为零的峰值或拐点部位,则该时段就为强震发生的危险 时段。

- 3 72	1	
-		

汾渭地麓带地震目录

序号	时间	震级	地点	序号	时间	震级	地点	序号	时间	复级	地点
1	512	7.50	代县	13	1467	5.50	朔县	25	1891	5,75	介休
2	649	5,50	临份	14	1487	6.25	临潼	26	1898	5.50	代县
8 '	793	6	清南	15	1501	7	朝邑	27	1909	5	和順
4	865	5.50	临汾	16	1556	8	华县	28	1916	5	新降
5	1022	6,50	大同	17	1568	5,50	临渡	29	1937	5	太原
6	1038	7.25	邢县	18	1618	6.50	介休	30	1952	5.50	崞阳
7	1148	5	榆林	19	1626	7	灵邱	31	19 59	5.4	輬 城
8	1187	6.25	临汾	20	1683	7	原平	32	1965	5,5	垣曲
9	1209	6,50	浮山	21	1695	8	临汾	33	1979	5.2	介休
•10	1291	6.50	临汾	22	1754	5	太原	34	1980	5.1	平遐
	1303	8	洪润	23	1816	6.75	平陆				1
12	1368	6	徐沟	24	1862	5.50	曲沃		÷ .		

二、 地震发生的周期性分析

将她震的时间序列看成是随机过程,则地震能量的释放可认为是由确定性部分与随机干 **扰因素两部分组**或。对于确定性部分可用谱分析的方法将隐含在随机干扰中的周期部分识别 并提取出来,然后再对剩余部分做线性序列分析。

设图 1 b中的地震数字序列由两部分组成:

$$X(t) = S(t) + Z(t)$$
 (1)

式中S(t)为确定性部分,Z(t)为随机部分。为了能从随机干扰中识别出周期,对于确定 性部分,用周期分析方法^[2]采用隐含周期模型

$$X(t) = a_0 + \sum_{j=1}^{L} (a_j \cos \omega_j t + b_j \sin \omega_j t)$$
 (2)

来拟合S(t),其中a。、a_i、b_i、ω_i、L为待定参数,而T_i = 2π/ω_i(j = 1,2,..., L) **是給识别得到的**隐含周期, L≤K。这里

N为资料的总长度,而(2)式中的系数

$$a_{0} = \frac{1}{N} \sum_{i=1}^{N} X_{i} = \overline{X}, \ a_{k} = \frac{2}{N} \sum_{i=1}^{N} X_{i} \cos\left(\frac{2\pi}{N} k_{i}\right),$$

$$b_{k} = \frac{2}{N} \sum_{j=1}^{N} X_{j} \sin\left(\frac{2\pi}{N} k_{j}\right)$$

称统计量

 $S_{k}^{2} = \frac{1}{2} (a_{k}^{2} + b_{k}^{2}), k = 1, 2, ..., K$

为随机过程X(t)的周期图。取

$$S^3 = \sum_{k=1}^{K} S^3_k \circ$$

为了从这些可能的周期中选取X(t)的真正周期,用Fisher检验法^[8],取 α =0.01,可选得随机过程X(t)的L(L \leq K)个周期,得地震序列曲线中周期部分:

$$S(t) = \alpha_0 + \sum_{j=1}^{L} (\alpha_j \cos \omega_j t + \beta_j \sin \omega_j t) . \qquad (3)$$

其中 $\alpha_0 = \alpha_0 = \overline{X}$, $\omega_i = 2 \pi i_i / N$ 。但应注意的是,在进行第二个显著周期的检验计算中, 应将已检验为显著的前一个周期去掉,其余类推。

将图 1 b中的数据分别截取133个点、141个点、143和149个点,依次进行预测,其预测 结果列于表 2 及图 2 中。由表 2 及图 2 可以看出,在进行周期图分析时,虽然资料的长短不 同,但其周期图S1;的几个峰值在横轴T上出现的部位大体一致,说明资料的长短 对周期图 的影响不大。随时间进程周期大体上是稳定的。这表明汾渭地震带地震活动长期受到 248 ±10年、166±10年、373±10年、497±10年和124±10年这五个周期因素的作用。虽然引 起汾渭地震带地震活动的这些周期因素现在还不清楚,但是,找到这些因素无疑对我们今后 的预报工作是一个帮助。

- 25		
- 7	R.	2

周期图(N=133, 141, 143, 149)

唐		N = 188	3	N = 141				N = 143			N = 3	L 4 9
j	ij	S 2	周期工」	i ;	s,	2 <mark>,</mark> 周期T;	ij	S 2 i i	周期T;	ij	S 2 1	周期工具
1	5	0. 336	266	6	0.32	6 235	6	0.380	238	6	0.460	248
2	8	0.225	166	11	0.16	9 128	9	0,189	159	9	0.198	166
8	6	0.180	222	5	0,15	9 282	11	0.167	130	4	0.142	373
4	2	0.157	665	4	0.18	3 353	4	0.152	358	8	0.141	497
5	10	0.069	133	9	0.13	7 157	б	0.095	286	12	0.060	124
6	4	0.067	333	2	0.05	7 705	8	0.073	477			
7	18	0.064	102	8	0.05	5 470	17	0.044	81			
8	7	0.061	190	14	0.04	6 101	14	0,035	102			
9	9	0.057	148	8	0.0.	0 176	2	0.035	715			
10	16	0,039	83	13	0.03	108	8	0.026	179			
11						ļ	10	0.026	143			
12							18	0.022	79			

图 3、图 4 是根据汾渭地震带公元504年~1937年的资料,对用上述周期分析方法 所 得 周期进行的后验。由图 4 可见,曲线在1934年~1984年出现峰值,在1964年前后达最大值。 实际上,这段时间内分别对应着1952年原平5.5级地震、1959年韩城5.4级、1965年 垣 曲5.5 级和1967年蒲县5.4级地震,而在此之前54年内该地震带无大于5.5级地震发生。 说 明 其预 测效果与实际发震结果吻合得较好,用所得到的周期可对未来百年内汾渭地震带发震时间进 行预报。

第13卷

三、 地震随机序列的自回归模型

地震数字时间序列在除去周期部分以后,余下随机部分。为了研究地震发生之间的随机 •统计关系(4),设

 $Z(t) = X(t) - S(t) = \eta(t) + \zeta(t)$

式中X(t)是原始序列,S(t)是周期部分,Z(t)是除去周期部分以后余下的随机部分,n(t)是随机部分中存在统计规律部分, $\zeta(t)$ 为随机噪声或称随机误差。

地震数字时间序列除去周期部分以后,余下序列

$$Z_1, Z_2, \dots, Z_N$$
 (4)

对上述序列,需先计算其自相关系数:

$$R(\tau) = \frac{1}{N-\tau} \sum_{j=1}^{N-\tau} \left(\frac{Z_j - \overline{Z}}{S} \right) \left(\frac{Z_j + \tau - \overline{Z}}{S} \right)$$
(5)

式中Z为序列(4)的均值,S为(4)式的标准差。图5给出了地震数字时间序列Z(t) 的自相关函数。由图5可见,序列(4)为平稳时间序列。由于

P(|R(τ)| ≤ 2/ \sqrt{N}) = 95.5% (N = 143, 2/ \sqrt{N} = 0.167), 自相关函数为拖尾型,序列之间存在线性关系。故可引入自回归模型进行预测。即

$$\widehat{Z}_{N+1} = \sum_{i=1}^{N} C_{i} Z_{N+1-i}$$
(6)

图 5 序列的自相关函数(504—1937年,N=143)

Fig. 5 Autocorrelation function of seismic series in Fenwei seismic bel

确定C;使预报误差平方期望

 $E(Z_{N+1} - \hat{Z}_{N+1})^{2}$

为最小,则Ci满足下列n阶代数方程组。即

R(0)	R(1)	••••	R(n-1))	R(1))	
R(1)	R(0)	•••••	R(n-2)		С2		R(2)		
•	•		•	i	•	=	•		(7)
•	•		•		•		•		
•	•		•		•		•		
R(n - 1) $R(n-2)$)	R(0)	}	C n		R(n))	

把由(5)式所求得的R(τ)之值代入上式,可求解得到C;之值。然后 再由C;之值判断,如果C;的前n个值落在置信区间 1.96/ \sqrt{N} (即当置信度为95%时,它的 置 信 区 间 为 ±1.96/ \sqrt{N})之外,也就是说,它们和零有显著性差异,而其它所有的系数(即偏自相关系数⁽⁵⁾)C_{n+1},C_{n+2},…,都落在置信区间之内,与零无显著性差异,那么可以确定这个时间序列的自回归模型的阶数等于n。当阶数n确定之后,就可以把由(7)式解得的前 n个 C;之值代入(6)式,得到n(t)部分的预测曲线值。

综合S(t)预测值与η(t)预测值可得到综合预测曲线,其曲线一阶导数为零的 那些 点,也就是预测曲线是峰值或拐点部位,即为地震发生的危险时段。

四、 外推预测

采用图 1 b的资料,从1989年外推预测百年内的地震情况,经计算得到:

N = 149;
$$\overline{X} = \frac{1}{N} \sum_{j=1}^{N} X_{j} = 20.85$$

S(t) = 20.85 + $\sum_{j=1}^{5} (\alpha_{j} \cos \omega_{j} t + \beta_{j} \sin \omega_{j} t)$ (8)

式中α₁、β₁之值分别见表 2 中N = 149部分。序列(4)的R(τ)之值和C₁之值分别见表 3。然后再将t = 150, 151, …, 170和C₁之值分别代入(6)式和(8)式, 可得到综合 预测曲线(图6、表3)。

图 6 汾 渭 地 震 带 預 测 曲 线 (504—1989 年, N = 149) a.周期部分S(t)預測曲线 b.随机部分η(t)預測曲线 c.S(t) +η(t)综合预测曲线 Fig. 6 Seismic predicted curves in Fenwei seismic belt

-		
-		- 18
-	ж.	•

預測值(N=149)

序号	預測时间	S(t)	R(T)	C(j)	η(t)	S(t) +η(t)
1	1984~1993	20.99	1	0.717	- 2.48	18.51
2	1994~2003	21,55	0.707	-0.112	-1.97	19.58
8	2004~2013	22,09	0.334	-0.188	- 1.25	20.84
4	2014~2023	22,55	- 0.040	-0.218	- 0.37	22.18
6	2024~2033	22,88	- 0,318	-0.007	0.51	23.39
6	2034~2 43	23,03	-0.419	-0.143	0.91	23.94
7	2044~2053	22,96	- 0.407	-0.084	1,05	24.01
8	2054~2063	22.68	- 0 , 309	0.003	0.98	23,66
9	2064~2073	22.24	-0.181	-0.159	0.71	22,95
10	2074~2083	21,68	-0.101	-0.167	0.51	22,19
11	2084~2093	21,09	- 0.045	-0,011	0,39	21.48
12	2094~2103	20,55	0.013	0.006	0.15	20.70
13	2104~2113	30,11	0,045	- 0,153	- 0.10	20.01
14	2114~2123	19.83	0.024	- 0,068	-0.12	19.71

由图 6 和表 3 不难看到,曲线在2024~2063年前后出现峰值,在2044年达最大值。预测 得到, 沿滑地震带将在2044年前后出现一次地震活动的高潮。再分别计算N = 133、 N = 147 可得到同样的结果,即曲线都在2044年前后出现峰值。

以上是根据扮**渭地震**带地震活动的周期性和随机性计算出来的结果。文中并未涉及带内 单个地震发震时间问题。 •

参考文献

- 〔1〕 王林、张晓卫, 微型计算机算法与程序, 上海科学技术文献出版社, 1983.
- 〔2〕 张建中等,地震发生时间的概率预报(二),地球物理学报, Vol.17, No.8, 1974.
- 〔8〕 林紀曾,观测数据的数学处理,地震出版社,1983.
- 〔4〕 宋良玉等,地震发生的随机模式,地震学报, Vol.2, No.8, 1980.
- (5) 王勇领,预测计算方法,科学出版社,1986.

STOCHASTIC ANALYSIS OF EARTHQUAKE OCCURRENCE IN FENWEI SEISMIC BELT

Xu Junqi

(Seismological Bureau of Shaanxi Province, Xi'an)

Abstract

Using the methods of periodogram and autoregressive model in a stationary random process, we discuss the rules and give the possible time interval in which several moderately strong earthquakes will happen in coming one hundred years in Fenwei seismic belt.