俄罗斯伊尔库茨克地区黄土 动力特性实验研究

王 峻,李 兰

(中国地震局兰州地震研究所, 甘肃 兰州 730000)

摘要:利用动三轴实验系统,对俄罗斯伊尔库茨克地区黄土的动力特性进行了研究.获得了该地区黄土的动力特性参数.分析结果表明,该地区黄土的动应力-应变关系符合双曲线模型;动剪模比与剪应变关系曲线具有良好的归一化特性;影响该地区黄土震陷的主要因素是含水量.

关键词:黄土;动力特性;动三轴实验;俄罗斯

中图分类号: TU411.8 文献标识码: A 文章编号: 1000-0844(2001)03-0286-05

0 前言

1998 年俄罗斯科学院西伯利亚分院地壳研究所教授 T.Γ.利雅辛柯博士等来中国地震局兰州地震研究所访问时,提供了俄罗斯伊尔库茨克地区的原状黄土试样. 作者利用动三轴实验系统对该黄土试样的动力特性进行了研究. 探讨了该地区黄土在动荷载作用下的应力-应变关系、动弹性模量、阻尼比以及震陷特性. 本文介绍了主要实验研究结果.

1 实验设备、荷载和土样

在实验中采用 DSD-160 型电磁式振动三轴仪. 动荷载选用频率为 1 Hz 的正弦波. 试样直径为 50 mm,高为 100 mm,取自俄罗斯伊尔库茨克地区安卡拉河右岸高阶地上,目测鉴定为黄土状土,形成的时代为晚更新世 (Q_3) . 黄土试样的物理性质指标见表 1.

 土样 编号	取土深 度/ m	密度 γ/ 干密度 [KN ° γ _d /[KN ° m ⁻³] m ⁻³]		。 含水量 ω/ ½	孔隙比 <i>e</i>	比重 _G	液限 ω _L / %	塑限 ω _p / %	塑性 指数	颗粒组成/ %		
编号			-3,						$I_{ m p}$	砂粒	粉粒	粘粒
1-98	3.5	16. 27	14. 01	16. 15	0.889	2. 70	30. 8	22. 9	7. 9	9.8	73.6	16. 6
2-98	0.7	14. 90	13.82	7.87	0.915	2.70	25. 9	16.5	9.4	32.0	46. 2	21.8
3-98	2.5	14. 99	12. 54	19. 23	1.110	2.70	30. 3	20. 7	9.6	19.4	56. 2	24. 4

表 1 黄土试样的物理性质指标

2 实验方法

在动弹性模量和阻尼比的实验中,首先将土样在静压力下固结. 取轴向固结压力 $\sigma_{lc}=80$

kPa,侧向固结压力 $\sigma_{3c} = k_0 \sigma_{1c} (k_0 = 0.59)$. 待固结变形稳定后,沿土样的轴向逐级由小到大施加动应力. 每级振动 10 次(相当于地震烈度 VIII). 在每级振动中都记录动应力和动应变的时程曲线和滞回曲线.

在震陷实验中,固结条件为 $\sigma_{1c}=200~\mathrm{kPa}$; $\sigma_{3c}=118~\mathrm{kPa}$. 实验方法参见文献[1].

3 实验结果及分析

3.1 动荷载作用下黄土的应力-应变关系

对中国西北地区黄土的动三轴实验结果表明²³,在动荷载作用下黄土的应力-应变关系可用双曲线模型表达.其表达式为:

$$\sigma_{\rm d} = \frac{\varepsilon_{\rm d}}{a + b\varepsilon_{\rm d}}; \ E_{\rm d} = \frac{\sigma_{\rm d}}{\varepsilon_{\rm d}} \tag{1}$$

$$\frac{\varepsilon_{\rm d}}{\sigma_{\rm d}} = a + b\varepsilon_{\rm d} \tag{2}$$

式中: σ_d 为动应力, ε_d 为动应变, E_d 为动弹性模量, a 和 b 为实验常数, 其大小取决于土的性质.

对俄罗斯伊尔库茨克地区黄土的动三轴实验结果进行了计算拟合,将 a 值和 b 值列于表 2 中. 由表 2 可见, ε_d / σ_d 和 ε_d 之间呈线性相关. 因此该地区黄土的动应力-动应变关系符合式(1) 所示的双曲线模型.

表 2	土样的	a 值和b	值
1 L	ユニリナロン	и <u>на</u> 1 н <i>о</i>	ıн

土样 编号	观测 次数	/× 10 ⁻⁴	b	相关系数 R
1-98	10	13. 25	0. 721 3	0. 994
2-98	10	9. 05	0.380 3	0. 996
3-98	11	13. 83	0.775 4	0. 991

3.2 动弹性模量和阻尼比

实验测得的黄土试样的 $E_{\rm d} \sim \varepsilon_{\rm d}$ 曲线和 $D \sim \varepsilon_{\rm d}$ 曲线见图 1 和图 2. 表 3 给出了黄土试样的动力实验结果.

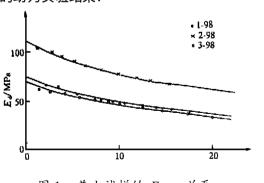


图 1 黄土试样的 E_{d} - ϵ_{d} 关系

Fig. 1 E_d versus ε_d for bess samples.

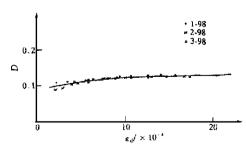


图 2 黄土试样的 D- ε_a 关系

Fig. 2 D versus ε_d for the loess samples.

由图 1 可见, 黄土的动弹性模量随动应变的增加而降低. 在应力条件相同时, 动弹性模量随含水量和孔隙比的增大而减小. 一般来说, 在相同固结压力下, 土的动弹性模量越大, 其抗震性能越好, 地震时地基发生不均匀沉陷的可能性就小^[4]. 对 3 组土样的综合分析表明, 在天然

含水量状态下, 2-98 土样的抗震性能最好, 从表 3 的实验结果可知, 土样的含水量是动弹性模 量的最主要的影响因素之一.

由图 2 可知,阻尼比 D 随动应变的增大而增大,动应变越大,土体内阻消耗量越多,因此 阳尼比越大,该地区3组十样的阳尼比变化范围为0.089~0.132.

表 3 土动力实验结	果
------------	---

土样编号	密度 γ/ [KN ° m ⁻³]	干密度 γ _d /[KN° m ⁻³]	含水量 ω/ %	孔隙比 <i>e</i>	轴向压力 _{σ1d} / kPa	侧向压力 σ _{3c} / kPa	初始动弹 性模量 E _{dmax} /mPa	10 ⁻³ 应变的 动弹性模量 <i>E _d/</i> M Pa	阻尼比
1-98	16. 27	14.01	16. 15	0.889	80.0	47. 2	75. 47	48. 87	0. 109 ~ 0. 132
2-98	14. 90	13.82	7.87	0.915	80.0	47. 2	110. 49	77. 80	0. 089 ~ 0. 123
3-98	14. 99	12. 54	19. 23	1.110	80.0	47. 2	72. 31	46. 33	0. 112 ~ 0. 130

动剪切模量和阻尼比 3.3

研究地基土在地震荷载作用下的应力-应变关系及进行地震反应分析计算时,主要研究动 剪应力和动剪应变之间的关系,以及反映这一特征的指标——动剪切模量 G.

动剪切模量的归一化方程[2] 为.

$$G/G_0 = \frac{1}{1 + \gamma_a/\gamma_c} \tag{3}$$

式中: G_0 为最大动剪切模量, γ_a 为动剪应变, γ_r 为参考剪应变.

利用式(3)对实验结果进行了非线性拟合,得到了动剪模比 G/G_0 与动剪应变 γ_a 关系曲 线,如图 3 所示,由图 3 可以看出,黄土的动剪模比随动剪应变的增加且有良好的归一化特 性.

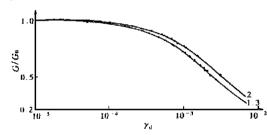


图 3 黄土试样的 $G/G_0 \sim \gamma_d$ 曲线

Fig. 3 G/G_0 versus γ_d for the loess samples.

黄土的阻尼比 D 与动剪应变 γ_a 的关系满足 下列双曲线模型①.

$$D = \frac{\gamma_{\rm d}}{A + B\gamma_{\rm d}} \tag{4}$$

式中: A 和B 为实验常数.

利用式(4) 对 3 组土样的阻尼比与动剪应变 进行拟合,结果如表 4 所示, $D \sim \gamma_d$ 曲线见图 4.

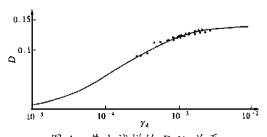

从表 4 和图 4 可以看出, 用上述双曲线模型 拟合阳尼比与动剪应变关系,效果很好,阳尼比随 动剪应变的增加而增大. 含水量大的土样, 阻尼比稍大一些.

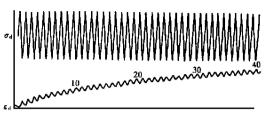
表 4 阻尼比拟合结果

•	土样 编号	观测次数	/×10 ⁻⁴	В	相关系数 R
	1-98	10	8. 823	7. 220	0. 998 8
	2-98	10	12.65	6.913	0. 999 1
	3-98	11	9. 577	7. 361	0. 999 0

3.4 黄土震陷或残余变形

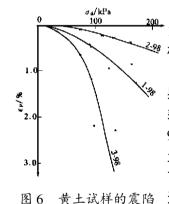
黄土震陷是指在地震作用下黄土孔隙结构产

黄土试样的 $D-\gamma_d$ 关系 Fig. 4 D versus γ_d for the loess samples.


王建荣. 振动频率对原状黄土动力特性影响的实验研究. 中国科学技术大学硕士学位论文. 1996.

生崩溃性破坏而形成的地面或建筑物的附加下沉,它与土的残余变形密切相关,黄土震陷可用 残余变形 ε_{ΡΝ} 来表示^[5], 即

$$\varepsilon_{PN} = \frac{H - H'(N)}{H} \tag{5}$$


式中: N 表示振次, H 和 $H^{\prime}(N)$ 分别表示动应力 σ_{0} 作用前和作用 N 次后试样的高度,

由实验的原始记录(图 5)可得到任一振次 N 所对应的残余变形 ε_P . 图 6 为 3 组十样的震陷 曲线. 由图 5 和图 6 可以看出, 动应力越大, 振动 次数越多, 土的残余变形越大, 在动应力作用下 土的残余变形与土的性质有关,表5列出了当动 应力 σ_a 为 100 kPa 时土样的震陷系数. 由表 5 可 见,该地区黄土试样的震陷系数随含水量的增高 而增大, 1-98 土样和 2-98 土样干密度和孔隙比

震陷实验记录 Fig. 5 Record of shock settlement test for the loess samples.

接近,但由于天然含水量的差异,使2组十样的震陷系数有较大差别,因此,可以认为含水量是 该地区黄十震陷最主要的影响因素之一.

曲线 (N=10)Curves of shock settlement (N = 10) for the loess sam ples.

由于该地区黄土试样的残余变形较小,在目前含水量状态下, 1-98 和 2-98 土样在地震时产生的附加沉陷可能较小, 而 3-98 土样 相对较大.

在表 5 中还列出了中国兰州地区的 4 组 03 黄土的震陷实验结 果,由表 5 可见, 2 个地区的干密度和孔隙比接近而含水量有较大 差别的土样的震陷系数非常接近,如俄罗斯伊尔库茨克地区的 1-98、3-98 土样和中国兰州地区的 L99-1、L99-3 土样, 2-98 与 L99-2 土样的干密度、孔隙比和含水量基本相同,但是在相同动应力条件 下, L99-2 土样产生的残余变形较 2-98 大得多. 另外, L99-4 土样的 天然含水量与 3-98 接近, 但震陷系数却大得多. 说明在相同的动应 力条件下,中国兰州地区 03 黄土的震陷性比俄罗斯伊尔库茨克地 区黄土强. 引起这种差异的原因可能是二个地区黄土的成因不同. 据俄罗斯学者的研究, 伊尔库茨克黄土是在冻融作用下形成的. 而

中国西北地区的 Q_3 黄土主要是风积形成的. 黄土动力学研究结果表明 6 ,黄土的成因类型与 震害有一定的关系,由于风成黄土结构疏松,震陷及其它次生灾害较为严重,而次生黄土场地 的抗震性能略好干疏松的风成黄十.

表 5 黄土试样的震陷系数							
地区	土样 编号	干密度 γ√[KN ° m ⁻³]	含水量 ω/ %	孔隙比	$\sigma_{ m d}^{}=100~{ m kPa}$ 时的震陷系数 $\epsilon_{p}^{}/\%$		
/s\\ m +c /m	1-98	13. 92 ~ 14. 31	15. 61 ~ 16. 15	0.863~0.915	0. 50		
俄罗斯伊 尔库茨克	2-98	13. 33 ~ 13. 92	7. 26 ~ 7. 87	0.915~0.971	0.15		
377700	3-98	12 25 ~ 12. 74	20.06~21.70	1. 092 ~ 1. 176	1. 42		
	L99-1	13. 72 ~ 14. 01	7. 95 ~ 8. 70	0.895~0.936	0.46		
中国	L99-2	13. 43 ~ 13. 72	6. 72 ~ 7. 65	0. 929 ~ 0. 971	1.43		
兰州	L99-3	12. 05 ~ 12. 74	9.88~11.80	1. 077 ~ 1. 195	1.46		
	L99-4	13.66~13.92	17. 97 ~ 19. 33	0.908~0.950	3. 45		

4 结论

- (1) 俄罗斯伊尔库茨克地区黄土的动应力-应变关系符合双曲线模型. 动剪模比与剪应变关系曲线具有良好的归一化特性. 利用式(4)对阻尼比与剪应变关系曲线的拟合效果很好.
- (2) 影响该地区黄土震陷的主要因素为含水量、动应力的大小及振动次数.其中含水量是一个最敏感的参数.

衷心地感谢 T.Γ. 利雅辛柯博士等为本次实验研究提供了土样.

[参考文献]

- [1] 王峻, 王兰民. 不同地震荷载作用下黄土震陷的试验研究[A]. 见: 第四届全国土动力学学术会议论文集[C]. 杭州: 浙江大学出版社, 1994. 138—141.
- [2] 段汝文, 张振中, 李兰, 等. 黄土动力特性的进一步研究[J]. 西北地震学报, 1990, 12(3): 72-78.
- [3] 王峻, 王兰民, 李兰. 不同地震荷载对黄土动模量和阻尼比的影响[]]. 自然灾害学报, 1992, 1(4); 75—79.
- [4] 段汝文, 张振中, 李兰, 等. 黄土动力特性研究及其在地震小区划中的应用[A]. 见. 第三届全国土 动力学学术会议 论文集[C]. 上海: 同济大学出版社, 1990. 107—110.
- [5] Wang Jun, Wang Lammin. Recent research on prediction of seismic subsidence of loess[Z]. 见: 12th World Conference on Earthquake Engineering (New Zealand), 2000. 1483.
- [6] 张振中. 黄土地震灾害预测[M]. 北京: 地震出版社, 1999.

THE LABORATORY STUDY ON DYNAMIC CHARACTERISTICS OF LOESS IN IRKUTSK, RUSSIA

WANG Jun, LI Lan

(Lanzhou Institute of Seismology, CSB, Lanzhou 730000, China)

Abstract: The dynamic characteristics of loess in Irkutsk, Russia are studied by using the dynamic triaxial test. The dynamic parameters of the loess are obtained. The results show that the stress-strain relationship obeys the hyperbolic model and the $G/G_0 \sim \gamma_d$ curves have good normalization character. It is found that the main factor that influences the shock settlement of the loess in Irkutsk is moisture content.

Key words: Loess; Dynamic character; Dynamic triaxial test; Russia