F-K 分析在上海地震台阵建设中的应用

佟玉霞,朱元清

(上海市地震局,上海 200062)

摘要:利用 F-K 分析处理地震台阵数据,进行地震波场分析,按频率分量、速度矢量来 分解几乎同时到达台阵的信号,识别不同慢度的波,有助于地震波类型鉴别研究.主 要讨论了 F-K 分析具体实现的方法和如何应用于上海地震台阵的选址与建设. 关键词: F-K分析; 地震台阵

中图分类号: P315.73 文献标识码: A 文章编号: 1000-0844(2002)01-0013-08

0 引言

地震台阵的出现可追溯到 20 世纪 50 年代.随着地震观测技术、电子技术、通讯技术和计算机技术的日趋成熟,地震台阵不断发展.目前全球约有 30 多个不同类型的地震台阵正在运转和建设过程中,台阵已成为全球地震监测网的重要组成部分.

台阵数据处理方法一直在发展完善,其中 F-K 分析法是台阵数据处理的基本方法之一. 它可增强从地震记录中提取可靠信息和信号检测能力,提高观测数据质量,从紊乱的强烈干扰 背景中突出有用的地震波信号,提高事件定位精度.它对于不同慢度、不同频率的波的识别和 分离有助于地震类型鉴别研究.还可用于上地幔地区差异的研究,确定地震噪声波场特性等.

在我国大陆地区,地震台阵的建设以及数据处理方法的研究还处于起步阶段.我国地震工作者在1971年曾翻译出版了国外地震资料的台阵专辑,中国科学院地球物理研究所于1970年开展了地震台阵的试验,有关内容没有公开发表.本文主要论述台阵 F-K 分析算法及其在上海台阵建设中的具体应用.

1 台阵 F-K 分析算法的理论基础

台阵记录的数据信号实际上是具有不同速度和方位的波叠加而成的一个地震波场.进行频率波数分析是台阵数据处理所独有的优势,是单个地震台所无法替代的.F-K分析可以区分不同方向地震波场的能量分布,通过可选择方向的速度滤波,将即使频率相同、波速大小相同但是方向不同的场地噪声与地震信号区分开来.而且可以得知波的慢度,由此不仅能够提高信噪比,同时有利于震相识别.

Aki(1986)详细讨论了台阵处理中的 F-K 分析法. 其基本内容是: 假设台阵位于 xy 平面上, 一给定波场 f(x, y, t) 可用 Fourier 变换分解为平面波

收稿日期: 2001-07-25

佟玉霞(1972-),女(汉族),中国地震局地球物理研究所博士研究生,主要从事地震分析预报及地震数据处理的研究.

$$f(x, y, t) = \frac{1}{8\pi^3} \iint_{-\infty} f(k_x, k_y, \omega,) \exp(ik_x x + ik_y y - i\omega t) d\omega dk_x dk_y$$

 $f(k_x, k_y, \omega)$ 是频率-波数谱,表示在 xy 平面上以视速度 v_a 、沿方位角 θ 的方向传播的平面波振幅和相位,方位角 θ 由下式确定:

$$k_x = \frac{\omega \cos \theta}{v_a}, \ k_y = \frac{\omega \sin \theta}{v_a}$$

如果能从子台观测到的 f(xi, yi, t) 估算出 f(kx, ky, ω),便可用简单平面波的迭加来解释一给定的波场.应用台阵估算频率-波数谱时,把直接处于台阵正下方的地球作为测量装置的一部分.由于通常此部分的地球是不均匀的,"平面波"在台阵下地球中传播时,不能保持平面波阵面.

设各子台的记录由有用信号的原生波与有用信号的散射波及噪音 3 部分组成. 在此仅讨论有用信号. 若介质是均匀的,则只有原生波的存在. 散射波是由原生波和非均匀介质相互作用而产生的. 假定非均匀性较弱,因此散射波遵循均匀介质的波动方程,其有源项由非均匀性和原生波的相互作用而确定. 其所载功率可明确地由包含在任何散射现象中的 3 个重要长度来给定,即非均匀区域的线性尺度 L, 非均匀性规模长度 a 和波长.

具有恒定速度扰动的无限平板(厚度有限)对垂直入射的平面波产生一个相位滞后的变化,但不影响其前进方向上的振幅.下面简单讨论在各个方向上速度随有限长度而变化的情况,只考虑标量波 Φ.为了简单起见,依然不考虑介质参数空间梯度的影响,而集中考虑只有速度扰动的影响.假设非均匀性在一个波长内是平滑的,则在此种情况下,

原生波形式为: $\Phi^0 = A \exp[-i\omega(t - x_1/c_0)]$ 散射波由下式给出.

$$\Phi^{1}(\vec{x}, t) = \frac{A\omega^{2}}{2\pi c_{0}^{2}} \int_{V} \left(-\frac{\delta}{c_{0}}\right) \frac{\exp\left[-i\omega\left(t-\frac{r}{c_{0}}-\frac{\varsigma_{1}}{c_{0}}\right)\right]}{r} dV(\xi)$$

式中: c_0 是波速, $V \in \mathfrak{d} \neq 0$ 的非均匀区域, 而 $r = |x - \xi|$, 见图 1(a).

为了清楚地定义非均匀介质的长度,考虑任意介质并用其自相关函数描述慢度的空间变化 $-\delta/c_0$. 令 $\mu(r) = -\delta/c_0$,假定 μ 的变化是各向同性的,且在空间内是平稳的,在所考虑的体积内有稳定的统计特性,则

的体积内有稳定的统计特性,则 可把相关函数定义为在独立样品 点 r_1 上的 $\mu(r)\mu(r+r)$ 的平均. 此函数将描绘出 $\mu(r)$ 变化的大 小和平滑性,可用来估计散射出 来的波的能量或者是观测波振幅 与到时变化的统计特性.用下式 定义归一化自相关函数.

$$N(\mathbf{r}) = \frac{\langle \mu(\mathbf{r}_1)\mu(\mathbf{r}_1 + \mathbf{r}) \rangle}{\langle \mu^2 \rangle}$$

<> 为平均算子.

设想体积 V 内可放置许多不同的速度扰动 ν ,每一个扰动有相同的自相关 $N. < |\Phi^l|^2 >$ 指对

Fig. 1 Sketch of wave propagation in inhomogeneous medium.

每一个速度扰动所估计的散射波所载功率的平均值.

根据 Chernov(1960), 考虑 $N(r) = e^{-\frac{|r|^2}{a}} \pi N(r) = e^{-\frac{|r|^2}{a^2}}$ 的情形, 式中 a是非均匀介质长度的范围, 称之为相关距离, 也可称之为非均匀性规模长度. 可得到:

$$< |\Phi^{l}|^{2} >= \frac{2A^{2}k^{4} < \mu^{2} > a^{3}V}{\pi |\vec{x}|^{2}} \times \frac{1}{1 + 4k^{2}a^{2}\sin^{2}\frac{\theta}{2}} \qquad \stackrel{\text{\tiny \underline{V}}}{\rightrightarrows} N(\vec{r}) = e^{-|\vec{r}|/a}$$

和

$$< |\Phi^{l}|^{2} > = \frac{A^{2}k^{4} < \mu^{2} > a^{3}V}{4\sqrt{\pi} |\vec{x}|^{2}} \times \exp(-k^{2}a^{2}\sin^{2}\frac{\theta}{2}) \qquad \stackrel{\text{where}}{=} N(\vec{r}) = e^{-|\vec{r}|^{2}/a^{2}}$$

式中: $k = \omega / c_0, \theta$ 为指向接收点方向矢量 \vec{n} 与原生波传播方向的单位矢量 \vec{e}_1 间的夹角,见图 1(b).

由于直接处于台阵正下方的地球的不均匀性,及观测点在这种情况下与散射源距离很近, 散射波与原生波几乎同时到达,影响原生波引起振幅和相位起伏.由此我们引入台站校正以 弥补这种状况.以视速度 c、沿方位角 Φ 的方向传播的波在第i 个的台站的到时表达为

$$t_i = t_0 + \frac{\cos \Phi}{c}(x_i - x_0) = \frac{\sin \Phi}{c}(y_i - y_0) + \tau_i$$

式中: t_0 是参考点(x_0, y_0)上的到时, τ_i 是台站残差($-\tau_i$ 是台站校正).对 3个以上的大量台站,可用最小二乘法测定的参数 t_0, c 和 Φ 3 个参数, 取 $\sum_i \tau_i^2$ 的极小, 然后采用最小二乘法测定的参数,确定 τ_i 为观测到时减去计算到时.

2 "台阵 F-K 分析算法"的具体实现

频率-波数功率谱可使我们对波场有个直接的物理理解,可表明分布在不同波速和到达方向的功率量.

估算功率谱有 2 种基本方法. 方法 1 是假设地震噪声在时间坐标 t 和空间坐标 x, y 上都 是平稳的,估算自相关函数,直接计算功率谱;方法 2 作频率-视慢度功率谱,将频率-波数功率 谱从波数域变换到视速度域,其相互关系为 $k = \omega/v_a$,此方法的优点在于可作一频率范围内 的估算.由于地震台阵在空间上所得的数据是不连续的,台阵不可能覆盖任意的空间点,作出 空间连续的测量,所以上述的 2 种方法对实际情况并不适用.

目前已研究出了几种近似的方法,最简单的方法是把聚束法与功率谱估计结合起来.下面 具体讨论2种估算功率谱的方法与聚束法的结合应用.

2.1 方法1

第一步:台阵的第 i 号子台相对于点(kx, kv, ω)进行聚束所要求的时间变化是

$$t_i = t_0 + \frac{k_x}{\omega}(x_i - x_0) + \frac{k_y}{\omega}(y_i - y_0) + \tau_i$$

式中: ti 为第 i 号子台的台站残差;(xi, yi)为第 i 号子台的位置座标;(xo, yo)为中心台的位 置座标.则进行聚束后的波束输出为

$$b(k_x/\omega, k_y/\omega, t) = \frac{1}{N} \sum_{i=1}^{N} r_i(t+t_i)$$

式中: $r_i(t+t_i)$ 为第 i 号子台的记录; N 为台阵的子台数.

第二步:利用有限长度离散数字序列的功率谱计算方法来得出波束输出的功率谱.本文主要采用"窗口法",减少有限长度的影响,通过计算自相关函数,选取窗口函数,进行离散 Fouri-

er 变换, 可得到作为一时间序列的 $b(k_x/\omega, k_y/\omega, t)$ 的功率谱.

2.2 方法 2

第一步: 对各子台记录 $r_i(x_i, y_i, t)$ 进行离散 Fourier 变换, 得到离散的 $F_i(x_i, y_i, \omega_j)$ 值. 第二步: 设时间延迟函数为 $e_{ij} = e^{i\omega S \cdot \vec{R}_i}$, 其中, S 为慢度矢量, \vec{R}_i 为第i 号子台在以中心点为原点的坐标系中的位置矢量. 计算 $F_i(\omega_i, S) = F_i(x_i, y_i, \omega_i)e_{ij}$.

第三步: 令 $T_{ik} = F_i(\omega_j, S) \circ F_k^*(\omega_j, S)$; 选择一频率窗, 对窗内的 ω_j 求和: $C_{ik} = \sum T_{ik}/2\pi$; 以 C_{ik} 为元素建立矩阵 C;

第四步:在选择的频率窗中,近似功率谱为:

$$p(s) = g^{T}C_{g} / \{ |g|^{2} \circ trC \}$$

相对于一分量台阵, $g^T = |1 1 1 \dots |;$

相对于三分量台阵, $g^T = (g_x, g_y, g_z)$, 与台阵的自由表面响应有关.

笔者所编制的程序以方法 2 得到初定结果,利用 Capon(1969)研究出来的最大似然估计 法和方法 1 进行修正,提高波数谱的分辨率,并使其功率谱的计算不要求等间距采样,即地震 仪的空间分布可以是不均匀的.

3 利用模拟波场来检验"台阵 F-K 分析算法"

为了定量地描述"台阵 F-K 分析算法"的效果,本文把具有不同速度矢量(方向不同、速率 不同)、不同频率、不同振幅的正弦波组合在一起,并叠加高斯噪声,以模拟近震、远震波场,据 此考察算法的实际效果.以上海地震台阵为例,其分布如图 2.

3.1 来自不同方向、不同频率波场

分别测试速度不同、频率不同的波,台阵 F-K 分析算法可准确地判别波传来的方向,指 出波源所在方向及视慢度.

(1)测试信号 1 模拟震中距为 306 km 的 近震,方位角为 30°; 波速为 6.8 km/s;方向为 210°;频率为 8.5 Hz. 测试所得的参数与理论 参数一致. 慢度误差为 0.010 1 s/km;方向误 差为 0.004 7°.

(2)测试信号 2 模拟震中距为 4 000 km 的远震,方位角为 315°;波速为 10.1 km/s;方 向为 135°;频率为 0.4 Hz.测试结果与理论参 数一致.慢度误差为 0.001 22 s/km;方向误差 为 0.035°.

(3)测试信号为模拟震中距为400 km 的近震及震中距为6110 km 的远震,方位角分别为30°和280°;波速为7.1和10.5 km/s;方向为210°和60°;频率为5 Hz 和0.3 Hz;波源所辐射波的振幅相同.频率范围在0.1~10 Hz 之间所做的F-K 分析,可以看到有2个波源,测试结果与理论参数一致.2个波源的慢度误差分别为0.0087、0.0197 s/km;方向误差分别为0.0068°、0.049°.

仅改变上述2个波源所辐射波的振幅比,由13变为1.23,在0.1~10Hz之间做F-K分

析,结果完全一致.

3.2 来自不同方向、相似频率的波场

测试速度不同、频率相似的波,台阵 F-K 分析算法同样可以准确地判别波来自的方向,指 出波源所在方向,并给出视慢度.

(1)测试信号为模拟震中距为 600、800 km 的近震,方位角分别为 25°、235°;波速为7.4、 7.6 km/s,方向为 55°、205°;频率为 3.8、3.5 Hz,测试结果与理论参数一致.慢度误差为 0.007 4、0.009 3 s/km;方向误差分别为 0.007 6°、0.006 8°.

(2)测试信号为模拟震中距为 2 400、2 800 km 的远震,方位角分别为 68°、326°; 波速为 8.9、10.3 km/s; 方向为55°、205°; 频率均为 0.8、0.75 Hz, 测试结果与理论参数一致.慢度误差 为 0.015 1、0.014 3 s/km,方向误差分别为 0.062°、0.053°.

3.3 来自不同方向、不同频率波场上叠加一个随机产生的高斯噪声

为了进一步测试台阵 F-K 分析算法,在上述测试信号上叠加一个随机产生的高斯噪声,每一子台所叠加的高斯噪声是不同的.

测试信号为 2个近震、一个远震波源, 方位角分别为 315°、30°、240°; 波速为 6.8、7.8、13.6 km/s; 方向为135°、210°、60°; 频率为 8、3.4、0.46 Hz, 波源所辐射波的振幅相同.测试结果与理论参数一致. 慢度误差分别为 0.007 3、0.008 9、0.017 5 s/km, 方向误差分别为0.006 1°、0.007 3°、0.052°.

3.4 测试结果分析

我们所编制的台阵 F-K 分析程序对几种不同波场的测试结果都与原假定波源的参数基本一致,可做到同一频率,速度不同的波源的清晰判别等.这说明了程序在理论上是可靠的,其测试所得的波源参数在允许的范围内.其误差来源主要是上海台阵的子台数目少(仅有 16 个),

(

 $0.02 \sim 20 \text{ Hz}$).

							0.0-	-0 110	, ,
	60 %,			,					
		F -K ₹	呈序处理约	吉果的影响					
在此	,						F-K	程序处	理结果的影
(1)			F-K	分析结果的影	影响.				
			1	(01.02	.05.0	6、07、15)、		2(01、02、05、
07.08	.09.13.15)、	3((01.02.04.05	5.06.0	7、08、09、10	13.15	5),	
. 11,	3.								
	1.	2.	3、		(16)			F-K
ŕ,				F-K	分析自	的影响,	1.		
	,			,					6,
0.228 3, 0.016 2;				0.032	27;	9,			0.0514,
			;	11,		0.0	0.019 1,		
1 18;		16,		0.008 37	,		0.00	64.	
(2)			F-K 🤅	分析结果的影	影响				
台阵	子台布设阵	式与 F-	K 分析结	果在慢度空	间的分	▶辨率有关.	3	可知,	
	1, 2	2、	3,		,			•	,
	在此 (1))7、08 11, :,	60 %, 在此, (1) 07、08、09、13、152 11, 3. 1、 1、 5, , 0.2 0 18; (2) 台阵子台布设阵 1、 2	60 %, F-K 和 在此, (1) 07.08、09、13、15)、 11, 3. 1、 2、 5, , 0.228 3, 0.016 2; 18; 16, (2) 台阵子台布设阵式与下- 1、 2、	60 %, F-K 程序处理结 在此, (1) F-K (1) 1, (1) 1, (1) 3. (1) 3. (1) 3. (1) 3. (1) 3. (1) 3. (1) 3. (1) 3. (1) 3. (2) F-K (2) F-K (2) F-K (2) F-K (2) F-K (2) F-K (3) 1, (4) 2, (5) 3.	60 %, F-K 程序处理结果的影响 在此, F-K 分析结果的影响 (1) F-K 分析结果的影响 (1) F-K 分析结果的影响 1(01、02 07、08、09、13、15)、 3(01、02、04、05 11, 3. 1 2、 3、 1, 2、 3、 5 F-K 0.016 2; 11, 11 18; 16, 0.008 37 (2) F-K 分析结果的影响 5 5 5 18; 16, 0.008 37 6 (2) F-K 分析结果的影响 5 6 11, 2、 3, 5 6 11, 16, 0.008 37 6 6 11, 16, 0.008 37 6 6 7 6 11, 12, 3, 1 7 7 7 7 12, 14,	60 %, , F-K 程序处理结果的影响 在此, (1) F-K 分析结果的影响. 1(01、02、05、00 07、08、09、13、15)、 3(01、02、04、05、06、00 11, 3. 1、 2、 3、 (11, 3. 1、 2、 3、 (12, 3、 (5.00 1.00 1.00 13, 1、 2、 3、 (1.00 1.	60 %, , F-K 程序处理结果的影响, 在此, (1) F-K 分析结果的影响, 1(01、02、05、06、07、15)、 07、08、09、13、15)、 3(01、02、04、05、06、07、08、09、10 11, 3. 1. 2、 3、 (16) 1, 2、 3、 (16) 7, 0.228 3, 0.032 7; 9, 0.016 2; 11, 0.0 18; 16, 0.008 37, (2) F-K 分析结果的影响 6 60年子台布设阵式与 F-K 分析结果在慢度空间的分辨率有关. 1、 2、 1, 2、 3, ,	60 %, , F-K 程序处理结果的影响 F-K 在此, F-K 分析结果的影响. (1) F-K 分析结果的影响. 1(01.02.05.06.07.15). 07.08.09.13.15). 3(01.02.04.05.06.07.08.09.10.13.15 11, 3. 1, 2, 3, (10, 2, 11, 3. 12, 3, 13, 1. 14, 2, 15, 1. 16, 0.0327; 9, 0.0162; 11, 0.0191, 18; 16, 0.00837, 18; 16, 0.00837, 11, 2, 3, 1. 14, 2, 3, 1.	60 %, , FK 程序处理结果的影响 F-K 程序处 (1) F-K 分析结果的影响. 1(01,02,05,06,07,15), 2((7,08,09,13,15), 3(01,02,04,05,06,07,08,09,10,13,15), 11, 3. 1, 2, 3, (16) F-K 分析的影响, 1. , 60,016 2; 11, 0.019 1, 18; 16, 0.008 37, 0.006 4. (2) F-K 分析结果的影响 60 F-K 分析结果的影响 台阵子台布设阵式与 F-K 分析结果在慢度空间的分辨率有关. 3 可知, 1, 2, 3, , ,

NE 方向的方位时,

图 3 上海地震台阵的 3 个子台阵分布图

Fig. 3 Distribution of three subarray from shanghai seismic array.

1 -	子台	数目	不同	的子	台阵	误差	分析
-----	----	----	----	----	----	----	----

震源参数及P波波速			子台阵1		子台阵 2		子台阵 3		上海地震台阵	
震中距	方位角									
/ km	/	$/[{\rm km \ ^{\circ}s^{-1}}]$	/[s°km ⁻¹]	/	/[s°km ⁻¹]	/	/[s°km ^{-h}]	/	/[s°km ⁻¹]	/
306	42	6.8	0.561	0.019 6	0.354	0.0098	0.136	0.008 7	0.089	0.004 5
400	331	7.1	0.998	0.056 5	0.679	0.0247	0.396	0.017 6	0.107	0.008 9
600	29	7.4	0.615	0.020 5	0.313	0.0094	0.118	0.006 4	0.084	0.005 7
600	320	7.4	0.967	0.052 3	0.620	0.0279	0.493	0.016 7	0.096	0.010 3
800	219	7.6	0.502	0.017 8	0.272	0.0095	0.116	0.009 2	0.062	0.006 8
1 200	127	7.85	0.816	0.049 2	0.634	0.0239	0.518	0.017 1	0.087	0.011 4
1 200	42	7.85	0.465	0.016 4	0.245	0.0086	0.137	0.008 7	0.056	0.007 1
2 500	78	8.9	0.381	0.021 8	0.214	0.0101	0.912	0.009 6	0.038	0.008
24 000	135	10.1	0.723	0.0514	0.502	0.0254	0.286	0.016 8	0.047	0.013 2
4 000	30	10.1	0.322	0.026 7	0.172	0.0146	0.083	0.009 8	0.027	0.008 6
6 000	225	10.4	0.231	0.028 1	0. 157	0.0153	0.061	0.010 1	0.012	0.009 8
例:					:		6,		0.3	362 6,
		0.047 5;		9,		0.0709,				
0.0236;		11,		0.027 6,				0.015 6		
		:	6,		0.1	539,		(0.021 5;	
9,			0.0404,		0.0110			11,		
0.0143,			0.008	9. ,					, F-К У	} 析的
分辨率	≤增加.									
	,		600 km . 1	200 km	1.4 000 km	l ,				
		,		F-K 结果的影响(1).		
		,	, F-K 分析结果在慢度空间的分辨率在						牌率在	

各个方向是相似的.

	图 4 近	震事件的波形	及F-K分析图			
	Fig. 4 The wavefor	rm of regional earth	quake and its F-K analysi	s.		
	Pn 首波的视慢度值为 0.120	7.9 km/s	,	164.548°(
	,).			344. 548°.	
	0.052° .					
4.2	远震事件					
	发震时间: 1999 年 3 月 29 日 3 时	5分8.5秒;	:	,	30°24′,	79 [°]
12′;	:269.001 8°.					
		03290311 进行	亍频谱分析,		0.05~2 Hz,	
	F-K 分析,	5.				
	P 波视慢度值为 0.073 23 s	/km,	13.65 km/s,		89.074 8 [°] .	
	269.074 8°.		0.073° .	Ρž	皮的视速度值可	J知,

5 结论

台阵数据处理方法在不断发展之中,F-K分析作为基本方法之一,

F-K 分析算法所编制程序的测试结果,

42°.

[]

- [J] Gupta N, Lynnes C S, Mcelfresh T W, et al. F-K 技术分析 NORESS 台阵和单台资料以识别近台和近源的散射源 [J]. , 2000, (3): 3-13.
- [2] Bear, Lorie K, Pavlis et al. Multiwavelet analysis of three-component seismic arrays: Application to measure effective anisotropy at Pinon Flats[J]. BSSA, 1999, 89(3): 693-705.
- [3] Arlitt R. Kissling E. Ansorge J. Three dimensional crustal structure beneath the TOR array and effects on teleseismic wavefronts[J]. Tectonophysics, 1999, 314(1-3); 309-319.
- [4] Hirn A, Diaz J, Sapin M, et al. Variation of shear-wave residuals and splitting parameters from array observations in southem Tibet J. PAGEOPH, 1998, 151(2-4); 407-431.
- [5] Wagner G S. Resolving diversely polarized, superimposed signals in three-component seismic array data[J]. Geophys. Res. Lett., 1996, 23 (14): 1837-1840.
- [6] , . [M]. : ,1992.
- [7] Svein Mykkeltveit, Frode Ringolo, et al. Application of regional arrays in seismic verication [J]. BSSA, 1990, 80(6): 1777–1800.
- [8] Anne Suteau-Henson. Estimating azimuth and slowness from three component and array stations [J]. BSSA, 1990, 80 (6): 1987-1998
- [9] Burkhard, et al. . [M]. , . : , 1988.
- [10] , . [M]. : , 1988. [11] , P.G. ()[M]. : , 1986.59-77.
- [12] Andrzej, Kijko. A statistical model for estimating the accuracy of event location applied to a network of scandinavian stations
 [J]. PAGEOPH, 1982, 120: 187-195.
- [13] A V, R W. [M]. : ,1981.
- [14] M. [M]. . : ,1976.

(下转26页)

STUDY ON THE EARTH DEFORMATION FIELD AND ITS RELATION WITH CRUSTAL VERTICAL MOVEMENT AND EARTHQUAKE CRUSTAL VERTICAL MOVEMENT AND EARTHQUAKE ([])

----Numerical expression and physical meaning of deformation field

GUO Wei-dong¹, TANG Mao-cang²

(1. Department of Atmospheric Sciences, Nanjing University, Nanjing 210093, China;

2. Lanzhou Institute of Plateau Atmospheric Physics, CAS, Lanzhou 730000, China)

Abstract: Relationship between earthquake and the earth deformation field is studied based on the viewpoint of field analyses. Deformation fields are obtained by introducing a series of numerical calculation steps in processing ground tilt data. The results show that the methods are capable of making up the shortcomings of the lack of data. Some typical deformation states on the earth surface are well reflected by earth deformation field such as convex/concave areas. The field analyses method also provides a useful idea for how to get and utilize large-scale spatial-temporal information in earthquake observation and prediction.

Key words: Ground tilt; Numerical calculation; Gauss curvature; Earth deformation field

(上接20页)

THE APPLICATION OF F-K ANALYSIS IN CONSTRUCTION OF SHANGHAI SEISMIC ARRAY

TONG Yu-xia, ZHU Yuan-qing (Seismological Bureau of Shanghai, Shanghai 200062, China)

Abstract: F-K analysis can be used in processing data of seismic array, and getting detailed information on seismic wave field. This approach can separate seismic signals which arrive the array almost at same moment, and identify the type of wave with different velocity. All those are helpful to distinguish complex seismic wave. Mainly the procedure of F-K analysis and application in Shanghai Seismic Array are discussed.

Key words: F-K analysis; Seismic array