# 预应力混凝土空心方桩承台节点抗震性能试验研究

倪国泉1,杨 军1,2,潘 鹏1,2,宋二祥1,2

(1. 清华大学土木工程系,北京 100084; 2. 清华大学 土木工程安全与耐久教育部重点实验室,北京 100084)

摘 要:对预应力混凝土空心方桩一承台节点进行了 6 组足尺试件的拟静力试验,分别讨论轴压力、 桩身配筋量、桩头嵌固深度和加载方向等 4 个因素对节点抗震性能的影响。研究表明:对于 HKFZ400(210)桩型,在 1 700 kN 及以上的轴压作用下,主要的破坏模式为近节点区桩身压弯破 坏,破坏性质均为小偏心破坏;轴向荷载使得预应力混凝土空心方桩承台节点极限抗弯承载力增 强,却削弱其变形能力,在 1 700 kN 轴压作用下节点表现出了较好的变形能力;对角线加载方向是 构件的静力弱方向,其极限承载力略低于正截面加载,但却有更大的变形能力;在 50 mm 嵌固深度 条件下,节点区没有发生锚固失效,反而表现出了更大的变形能力,但在破坏状态下的等效粘滞阻 尼系数有所降低。

关键词:空心方桩;节点抗震;拟静力试验;预应力;预制桩 中图分类号:TU473.1 文献标志码:A 文章编号:1000-0844(2013)02-0246-06 DOI:10.3969/j.issn.1000-0844.2013.02.0246

## Quasi-static Tests of Pile-cap Connections for the Prestressed Spun Concrete Square Piles

NI Guo-quan<sup>1</sup>, YANG Jun<sup>1,2</sup>, PAN Peng<sup>1,2</sup>, SONG Er-xiang<sup>1,2</sup>

(1. Department of Civil Engineering, Tsinghua University, Beijing 100084, China;

2. Key Laboratory of Civil Engineering Safety and Durability of China Education Ministry, Beijing 100084, China)

Abstract: Quasi-static tests of six full-scale prestressed spun concrete square piles-cap connections were conducted to investigate the influence of 4 parameters on the seismic behavior of the connection. The results and findings indicate: ①With axial load larger than 1 700 kN, failures governed by concrete compression take place in the connected part of the piles due to small eccentricity. ② Axial load increases the loading capacity for the connection but on the other hand decreases its deformation capacity. The connection shows considerable deformation capacity under axial load of 1 700 kN. ③Connection under diagonal loading condition is statically weaker, while showing better deformation capacity. ④With a 50 mm dowel depth into the cap, the connection functions well and is capable of larger deformation. But the corresponding equivalent viscous damping coefficient is lower at failure.

Key words: Spun concrete square pile; Pile-cap connection; Quasi-static tests; Prestressed; Pre-casted pile

## 0 引言

装载运输便捷、承载性能优良、经济效益高等优

预应力混凝土空心方桩具有生产施工易管理、

少 收稿日期:2013-03-20

基金项目:国家自然科学基金项目(50908123);清华大学自主科研计划(2010THZ0)

作者简介:倪国泉(1990-),男,浙江杭州人,硕士研究生,从事桩基抗震研究工作(Email:bono5137@163.com).

通讯作者:杨 军(1974一),男,四川邻水人,副研究员,博士,从事地下工程研究(Email; junyang@tsinghua. edu. cn).

势<sup>[1]</sup>,拥有广阔的工程推广前景。目前国内对于该 桩型的研究大多只停留在静力承载范围[2-3],而对其 抗震性能的研究资料较为缺乏,因而现行规范对其 工程应用作了较为保守和严格的限值,规定不宜在 高抗震设防烈度地区中使用[4-5]。为了研究预应力 混凝土空心方桩的抗震性能及其适用条件,需要对 该桩型在地震作用下的力学性能进行研究。而在地 震中,桩头承台节点处往往受力和变形最大,震害调 查也表明此处最易受损。因此本文重点关注此节点 抗震性能。本研究参考国外学者对于八角形实心或 空心预应力混凝土桩的研究工作[6-7]设计试验,包括 6个足尺预应力混凝土空心方桩与承台连接节点的 拟静力试验,详细研究此类节点的破坏形式及抗震 性能,为该桩型在工程中的应用及桩身和节点抗震 性能改进提供试验依据,对预应力混凝土管桩也有 参考价值。

## 1 试验设计

#### 1.1 试件设计

试件均为同一尺寸外方内圆桩,截面边长 400 mm,内直径 210 mm,截面内部在配置 8 根高强 PC 钢棒为桩身纵筋,如图 1。其中,A 型桩纵筋直径为 9 mm;AB 型桩为 10.7 mm。桩身混凝土为天津中 技生产基地所用混凝土,同一批次混凝土标号 C60, 预留试块 7 天;150 mm×150 mm 立方体



图1 桩身截面示意图 Fig.1 Cross section of the pile.

抗压强度平均值为 64.8 MPa。考虑到该预制桩的 离心生产工艺,其实际桩身混凝土强度分布应和预 留试块有所区别。后续对桩身混凝土钻芯取样结果 表明,桩身外围混凝土较内部更为密实,强度应高于 平均值,而内部则较为松散。这对于桩身纯弯和压 弯作用下的极限承载力来说是有利的。桩身预应力 钢棒抗拉强度平均值为 1 478 MPa,钢棒断后伸长 率平均值为 7.83%。 在地震荷载下,桩承台连接节点主要将上部水 平地震荷载传递到桩身,受弯剪作用。这里通过在 桩身近承台反弯点处施加往复力来模拟其受力状 态。通过对若干不同土层条件中该桩在水平荷载作 用下桩身弯矩分布的数值模拟,得到反弯点分布范 围,结合实验室设备参数截取桩身长度均为 1.96 m。本试验荷载为单向往复加载水平力,故承台简 化为一梁式承台,预制桩身脱模养护成型后,连接于 桩端。连接处构造按照 08SG360《预应力混凝土空 心方桩》<sup>[5]</sup>规范图集中不截桩承台节点构造要求,用 四根 Φ20 螺纹钢筋锚固,填芯部分用 C40 微膨混凝 土填充,并布置钢筋笼(图 2)。



## 图 2 连接节点构造 Fig. 2 Details of pile-cap connection.

#### 表1 试件一览表

Table 1 Summary of specimen information

| 试件编号   | 桩型号            | 轴向荷<br>载/kN | 崁固深<br>度/mm | 备注       |
|--------|----------------|-------------|-------------|----------|
| HKFZ1  | HKFZ400(210)AB | 2 280       | 100         | 标准试件     |
| HKFZ 2 | HKFZ400(210)AB | 2 850       | 100         | 轴压水平二    |
| HKFZ 3 | HKFZ400(210)AB | 1 680       | 100         | 轴压水平三    |
| HKFZ 4 | HKFZ400(210)AB | 2 280       | 100         | 对角线加载    |
| HKFZ 5 | HKFZ400(210)AB | $2\ 280$    | 50          | 减小嵌固深度   |
| HKFZ 6 | HKFZ400(210)A  | 2 280       | 100         | 减小桩身纵筋截面 |

本试验共加工了 6 个试件,进行 4 组节点低周 反复加载试验,试件规格见表 1。其中,HKFZ1 为 标准试件;HKFZ2 和 HKFZ3 为第一组对比试件, 研究轴压对抗震性能的影响,轴压分别选取该桩型 在某地质条件下极限承载力<sup>[3]</sup>的 0.5,0.65 和 0.8 倍;HKFZ4 为第二组对比试件,研究加载方向的影 响;HKFZ5 为第三组对比试件,研究嵌固深度的影 响;HKFZ6 为第四组对比试件,研究桩身纵筋的影 响。

## 1.2 试验加载设备

试验加载设备如图 3 所示。为便于水平力施 加,本试验中试件倒置加载,水平加载高度为离承台 1.64 m 处,水平荷载由水平液压千斤顶施加,轴向 液压千斤顶提供竖向压力,顶部摩擦系数经标定小 于百分之一。试件底部地梁用压梁和水平千斤顶约 束在地面上。

试验中通过千斤顶上的力传感器得到轴力和水 平力,在桩侧布置位移计读取位移。



#### 1.3 加载制度及量测内容

试验加载制度参照《建筑抗震试验方法规程》 (JGJ101-96)<sup>[8]</sup>,采用力与位移混合加载。在构件 屈服前按力控制加载,每级荷载增量 50 kN。进入 屈服后采用位移控制,位移加载幅值按屈服位移的 整数倍递增。力控制阶段每级循环 1 次,位移控制 阶段每级循环 2 次。水平承载力下降为峰值荷载 85%以下或轴力难以继续施加时认为破坏。

## 2 试验结果分析

#### 2.1 宏观破坏分析

试件典型破坏形态如图 4(a)所示。主要有以 下特点:

(1) HKFZ1、HKFZ2、HKFZ3、HKFZ4 屈服位
 移均发生在 1.8~2.4 mm 之间,HKFZ5 和 HKFZ6
 则要略大,接近 3 mm。各试件加载特征点如表 2。

表 2 试验加载特征点

Table 2 Summary of characteristic values

| 计件口 | M /l-NL           | M /l-NL                 | A 1                    |
|-----|-------------------|-------------------------|------------------------|
| 风什亏 | $M_y/KIN \cdot m$ | $IVI_u / KIN \bullet m$ | $\Delta u/\mathrm{mm}$ |
| 1   | 301               | 566.0                   | 18.84                  |
| 2   | 369               | 626.9                   | 13.27                  |
| 3   | 240               | 495.6                   | 24.27                  |
| 4   | 298               | 523.5                   | 25.79                  |
| 5   | 334               | 485.6                   | 27.90                  |
| 6   | 300               | 517.1                   | 23.87                  |

(2)由于预应力的存在,加载过程中各试件开 裂均发生在屈服之后,开裂模式均为先横向裂缝后 竖向裂缝。

(3) 整体破坏形态为桩身近节点区塑性铰破 坏,各试件在现有受力环境下均没有发生锚固钢筋 被拔出,后浇连接处分离的破坏形式。HKFZ5 嵌 固深度为 50 mm,同样发生了桩身压弯破坏。

(4) 试件为小偏心受压,其最终破坏形式为侧 向高强混凝土压裂,破坏区域最终发展高度为两倍 桩径左右,较非预应力钢混竖向构件要高。但由于 预应力的存在,试件屈服由受拉侧钢筋屈服引起。

(5)破坏阶段,试件截面损伤,轴向承载力骤 减,破坏时均出现了螺旋箍崩断,纵筋压曲外鼓,轴 向荷载无法维持,破坏局部如图 4(b)所示。



图 4 试件典型破坏模式 Fig. 4 Typical failure patterns.

破坏阶段构件轴向承载力的减小使得节点区截 面抗弯承载力降低,因而构件水平回复力也出现了 骤降。试件最终破坏由单侧混凝土压碎引起,最终 破坏阶段受拉侧钢筋应变增量不大,整体构件变形 没有较大变化。

#### 2.2 滞回曲线分析

滞回曲线是在低周往复荷载作用下,构件恢复 力和变形之间的关系,能综合反映往复荷载作用下 构件的特征参数、性能变化和耗能能力。试验中记 录两类滞回曲线,第一类为荷载一位移滞回曲线,记 录往复荷载作用下顶部反力和位移之间关系如图 5;第二类为弯矩一位移角滞回曲线,记录节点处所 受弯矩和节点变形之间的关系,如图 6。其中弯矩 一位移角滞回曲线考虑轴压作用下的二阶效应,较 第一类滞回曲线更满足连接部位抗震性能分析需 要。

由图 6 可知:

(1)进入位移控制加载阶段后,受压侧桩身纵筋已进入屈服阶段,加载时节点刚度不断退化,受压侧纵向裂缝的发展更加剧了这一情况。

(2) 位移控制加载端卸载刚度也同样小于弹性



倪国泉等:预应力混凝土空心方桩承台节点抗震性能试验研究





阶段,但其减小幅度叫加载刚度要小。

(3)各试件的滞回曲线均存在一定的捏缩现 象,但这一现象主要集中屈服阶段附近,在加载后期 有所缓解。

(4) 在第一组对比中,高轴压 HKFZ2 滞回环 成"弓形",其耗能性能不如 HKFZ1,而 HKFZ3 单 圈滞回面积则要大于 H<sup>1</sup>FZ1。第二、三、四组对比 中,HKFZ4、HKFZ5、HKFZ6 滞回环均较 HKFZ1 要饱满,整体耗能能力优于标准试件。

#### 2.3 骨架曲线分析

取弯矩一位移角滞回曲线各级循环加载峰值绘 制成骨架曲线,如图7。由骨架曲线可知:



(1) 轴压越大,节点弯矩峰值越大,但峰值对应 的变形越小,越早进入承载力下降阶段,而且变形能 力越小,加载极限位移也小。而轴压小的构件则有 较大变性能力,但弯矩峰值要小得多。本试验中, HKFZ2 峰值弯矩较 HKFZ1 增加了 11.6%,但其 极限加载幅值(顶部位移)则减小了 29.56%, HKFZ3 峰值弯矩降低了 12.13%,但其极限位移则 增加了 29.88%,而且弯矩下降段非常平缓。

(2)对角线加载情况下,节点弯矩峰值要比正向加载小7.45%,从静力加载角度来说是不利的, 但其变形能力有所增加,极限位移增加了36.89%。

(3) 嵌固深度较小的构件 5 节点抗弯承载力极 限较 HKFZ1 减小 17.33%,但其极限位移增加了 51%,而且承载力下降过程中出现了较长的平滑段, 变形能力加强较多。

(4) 将桩身 PC 钢棒直径从 10.7 mm 减小至 9 mm 后,节点弯矩极限承载力减小了 8.65%,而极

限位移则增加了 26.69%。

#### 2.4 刚度退化

文献[8]建议用割线刚度 K, 的衰减来评估构件的刚度退化,各级荷载下的割线刚度按下式计算:

$$K_{i} = \frac{|+F_{i}| + |-F_{i}|}{|+X_{i}| + |-X_{i}|}$$
(1)

其中,+ $F_i$ 和- $F_i$ 分别为第i级加载循环的峰值荷载,对应为本试验中的节点弯矩;+ $X_i$ 和- $X_i$ 则为对应的峰值荷载时变形,对应为本试验中的位移角。 各试件刚度退化情况如图 8 所示。由图可知,各试 件初始加载刚度略有差异,但随着加载进行,变形增 大,割线刚度逐步接近,且整体规律趋于一致,因此 试验中的四个控制变量对节点刚度退化过程影响不 大。



### 2.5 能耗分析

构件的耗能能力可通过计算单圈滞回环所包围 面积来评估,这里分别采用等效粘滞阻尼系数  $\xi_{\epsilon}^{[9]}$ 和文献[8]中建议的能量耗散系数 E 来分析试件的耗能能力。对于如图 9 所示的单圈滞回环,等效粘 $滞阻尼系数 <math>\xi_{\epsilon}$ 和能量耗散系数 E 可通过下式计算:

$$E = \frac{S_{ABC} + S_{DCB}}{S_{AOF} + S_{DOE}}$$

$$\xi_{\epsilon} = \frac{1}{2\pi} \frac{S_{ABC} + S_{DCB}}{S_{AOF} + S_{DOE}} = \frac{E}{2\pi}$$
(2)

分别对极限弯矩和极限位移角所在滞回环进行 耗能分析,见表 3。其中,滞回环截取和总能耗 W, 的计算均从控制位移为零开始,经过一个完整的加 载循环结束。认为试验中轴向承载力降低超过设计 值 5%时构件达到极限位移,对应耗能评估选取其 上一加载循环。

由表可知:(1)各试件极限状态下等效粘滞阻尼 系数在 0.255~0.357 之间,破坏状态下的等效粘滞 阻尼系数在 0.401~0.559 之间;(2)轴压越大,对应



Fig. 9 Hysteretic curve ring of load-displacement.

承载力极限和破坏状态下滞回总耗能 W, 越小;(3) 对角线方向加载下,承载力极限和破坏状态下构件 耗能能力均要强于正截面加载;(4)减小节点处嵌固 深度后,节点更晚达到极限承载力,对应状态下构件 的耗能性能有所增强,但破坏状态下构件等效阻尼 系数则减小了。

| 表3 试件耗能指标 |  |
|-----------|--|
|-----------|--|

| Table 3 | Energy | dissipation | coefficients | of | specimens |
|---------|--------|-------------|--------------|----|-----------|
|---------|--------|-------------|--------------|----|-----------|

| 试件    | 滞回状态         | 总耗能 W <sub>t</sub> | 能量耗散         | 等效粘滞                |
|-------|--------------|--------------------|--------------|---------------------|
| 编号    |              | /kN・m              | 系数 E         | 阻尼系数 ξ <sub>e</sub> |
| HKFZ1 | 极限状态         | 7 294              | 1.60         | 0.255               |
|       | 破坏状态         | 12 967             | 2.79         | 0.444               |
| HKFZ2 | 极限状态<br>破坏状态 | -567710126         | 1.73<br>3.02 | 0.275<br>0.480      |
| HKFZ3 | 极限状态         | 11 616             | 2.22         | 0.353               |
|       | 破坏状态         | 19 860             | 3.33         | 0.529               |
| HKFZ4 | 极限状态         | 12 356             | 2.24         | 0.357               |
|       | 破坏状态         | 19 936             | 3.34         | 0.531               |
| HKFZ5 | 极限状态         | 10 738             | 2.13         | 0.339               |
|       | 破坏状态         | 16 027             | 2.52         | 0.401               |
| HKFZ6 | 极限状态         | 7 583              | 1.70         | 0.270               |
|       | 破坏状态         | 15 092             | 3.51         | 0.559               |

## 3 结论

(1) 对于 HKFZ400(210) 桩型来说,在 1 700 kN 及以上的轴压作用下主要的破坏模式为近节点 区桩身压弯破坏,破坏性质均为小偏心脆性破坏。

(2)轴向荷载增大使得预应力混凝土空心方桩 承台节点极限抗弯承载力增强,却削弱其变形能力。 在 1 700 kN 轴压作用下节点才表现出了较好的变 形能力。

(3)对角线加载方向是构件的静力弱方向,其 极限承载力略低于正截面加载,但却产生更大的变 形能力,利于抗震。

(4) 在 50 mm 嵌固深度条件下,节点区没有发 生锚固失效,反而表现出了更大的变形能力,但在破 坏状态下的等效粘滞阻尼系数有所降低。 (5)将桩身 PC 钢棒直径减小后,节点静力性能 有所降低,但变形能力增强。实际工程应用中可以 考虑将部分预应力 PC 钢棒替换为强度较低但延性 更好的非预应力筋。

(6)预应力混凝土空心方桩节点滞回性能受轴向荷载影响最大,在 30 00 kN 轴压作用下节点变形能力显著降低。工程中考虑抗震要求需要设置更大的安全系数。

致谢:上海中技桩业股份有限公司张厚禅、杨末 丽和梁军起对本项试验工作亦有贡献。

## [参考文献]

 [1] 苑辉. 谈预应力混凝土空心方桩较管桩性能的优越性[J]. 山 西建筑, 2010,22(30): 101.

YUAN Hui. On advantages of prestressed concrete hollow square pile over pipe pile's performance[J]. Shanxi Architecture, 2010,22(30):101.

- [2] 刘芙蓉,贾燎,李枨. 预应力混凝土空心方桩焊接接头抗弯试 验研究[J]. 武汉大学学报,2008,30(5):106-108.
   LIU Fu-rong, JIA Liao, LI Cheng. The Test Study on Welding Joint Flexural Bearing Capacity of Prestressed Concrete Hollow Square Pile[J]. Journal of Wuhan University Technology,2008,30(5):106-108.
- [3] 王广宇. 预应力混凝土空心方桩成套技术研究[D]. 北京:中 国科学建筑研究院,2007.

WANG Guang-yu. Researches on the Prestressed Spun Concrete Square Pile Techniques[D]. Beijing: China Academy of Building Research, 2007.

[4] (JGJ94-2008)建筑桩基技术规范[S]. 北京:中国建筑工业出

版社,2008.

(JGJ94-2008) Technical Code for Building Pile Foundations [S]. Beijing: China Architecture & Building Press, 2008.

[5] (08SG360)预应力混凝土空心方桩[S].北京:中国计划出版 社,2009.

(08SG360) Prestressed Concrete Hollow Square Piles [S]. Beijing: China Planning Press, 2009.

- [6] Charles W Roeder, Robert Graff, et al. Sesimic Performance of Pile – Wharf Connection[J]. Journal of Structural Enginnering, 2005,131(13):428-437.
- [7] Pam Hoat Joen, Robert Park, et al. Simulated Sesimic Load Tests On Prestressed Concrete Piles and Pile – Pile Cap connections[J]. Journal of the Precasted/Prestressed Concrete Institute, 1990, 35(6):42-61.
- [8] 中国建筑科学研究院.(JGJ101-96)建筑抗震试验方法规程
  [S].北京:中国建筑工业出版社,1997.
  China Academy of Building Research.(JGJ101-96) Specification of Testing Methods for Earthquake Resistant Building
  [S]. Beijing; China Architecture & Building Press, 1997.
- [9] 刘晶波,杜修力.结构动力学[M].北京:机械工业出版社, 2011.

LIU Jing-bo, DU Xiu-li. Structure Dynamics[M]. Beijing: China Machine Press, 2011.

[10] 周爱红,袁颖,侯征,等. 桩一土一结构体系随机地震响应的实用计算方法及参数分析[J]. 西北地震学报,2011,33(1):51-55.

ZHOU Ai-hong, YUAN Ying, HOU Zheng, et al. Parametric Analysis and Practical Calculation Method for the Stochastic Seismic Response of Soil—Pile—Structure Interaction System[J]. Northwestern Seismological Journal, 2011, 33(1): 51-55.