结构抗震鲁棒性分析方法研究
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

国家自然科学基金(51178211)


Study on Seismic Robustness of Structure
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    结合侧向增量连续倒塌过程中框架结构受力特征来研究结构抗震鲁棒性,提出其定量计算方法,通过对钢筋混凝土框架结构有限元模型的对比分析进行验证。研究表明:结构鲁棒性强弱是一个相对概念,虽然无法设计和建造出绝对鲁棒的结构,但可以通过定量分析结构鲁棒性进行建筑选型和结构布置方案优化;降低重要构件的易损性系数能够增强结构抗震鲁棒性,合理增加构件数量,同时加强其相互联系的有效性并保证备用荷载路径的可靠性,能够提高整体结构的鲁棒性;在同样荷载作用下,随着所承担荷载的不同,框架柱易损性系数按照大小排序依次为中柱、边柱和角柱,而由于备用荷载路径分布和传递荷载的机制不同,框架柱重要性按照大小排序则依次为角柱、边柱和中柱,对易损性系数和重要性系数均较大的构件设置可靠保护或增加荷载传递路径都能够提高整体结构抗连续倒塌的鲁棒性;提高结构冗余度,增强构件相互联系,可以降低结构中初始失效所造成的不利影响。

    Abstract:

    In the last decade because of the frequent occurrence and great harm brought by the progressive collapse of structures, this problem has attracted increasing attention in the engineering field and has become a hot research issue worldwide. Progressive collapse is defined as a situation where the local failure of a primary structural component leads to the collapse of the whole structure. A safe and robust structure is able to bear the required loads to prevent complete collapse. Researchers have suggested a number of ways to ensure that buildings of significant size can absorb local damage and resist progressive collapse. However, the source and magnitude of the loads may differ, so it is impossible to design and construct structures that can guarantee absolute safety. Although much work has been done in the field of structural robustness, the term used for structural property prevents progressive structural collapse and is still in the exploration stage. So far, there is no clear definition or accepted parameters to quantitatively evaluate structural robustness. In this study, we describe the progressive-collapse resistance robustness of a frame structure and propose a target-oriented component vulnerability coefficient in combination with an internal force feature of the frame structure during the collapse process. Additionally, we improve an existing structural robustness coefficient. Furthermore, we verified the practicability of our proposed method by computing a finite element model of a reinforced concrete frame structure using the finite element analysis software, SeismoStruct V6.5. Our results show that structural robustness is relative and can be enhanced by reducing the member vulnerability coefficient of important columns. Under the same load, the vulnerability coefficient of the frame columns can be segregated as the middle, side, and corner columns, and the member importance coefficients have the opposite values. Components with large vulnerability and important coefficients should be protected to ensure structural robustness.

    参考文献
    相似文献
    引证文献
引用本文

包超,杜永峰,刘勇,徐天妮,王国福.结构抗震鲁棒性分析方法研究[J].地震工程学报,2015,37(3):660-666. BAO Chao, DU Yong-feng, LIU Yong, XU Tian-ni, WANG Guo-fu. Study on Seismic Robustness of Structure[J]. China Earthquake Engineering Journal,2015,37(3):660-666.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2014-06-30
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-12-25