Quantitative evaluation of 1D seismic response analysis methods of soil layers based on dynamic time warping
Author:
Affiliation:

Clc Number:

TU43

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To quantitatively evaluate the gap between the calculated acceleration response spectra of 1D soil seismic response analysis methods and the actual records, 2 418 groups of acceleration response spectra calculated by four 1D numerical simulation methods (i.e., DEEPSOIL, SHAKE2000, SOILQUAKE, and SOILRESPONSE) were collected in this research. Based on the actual records of KiK- net in Japan, the applicability of the dynamic time warping (DTW) algorithm for quantitatively evaluating the response spectra gap was verified, and the DTW distances between actual records and calculated acceleration response spectra of different sites and different peak ground acceleration (PGA) intervals were compared and analyzed. Results revealed that on class Ⅱ sites, when PGA is less than 0.2g, the average DTW distances of the four methods have a slight gap, and when PGA is larger than 0.2g, the average DTW distance of the SOILQUAKE method is smaller than others. On class III sites, when PGA is less than 0.2g, the average DTW distance of the DEEPSOIL method is smaller, and when PGA is larger than 0.2g, the average DTW distance of the SOILRESPONSE method is smaller than others. On class IV sites, when PGA is less than 0.1g, the average DTW distance of the DEEPSOIL method is smaller, and when PGA is larger than 0.1g, the average DTW distance of the SOILRESPONSE method is smaller than others. On different classes of sites, the DTW distances of the four methods increase as PGA increases, and the growth rate of the DTW distance for the SOILRESPONSE method is lower than the three other methods on classes Ⅲ and Ⅳ sites. DTW distance can accurately and effectively reflect the gap among the spectra, thus providing a new method for quantitative evaluation of 1D soil seismic response analysis methods.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: April 03,2023
  • Published: